Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (5): 905-916    DOI: 10.3785/j.issn.1008-973X.2021.05.011
    
A rapid reconstruction method of simulation model based on point cloud and design model
Jun CAI1(),Gang ZHAO1,2,Yong YU1,3,*(),Qiang-wei BAO1,Sheng DAI1
1. School of Mechanics and Automation, Beihang University, Beijing 100191, China
2. Key Laboratory of Aeronautics Smart Manufacturing, Beihang University, Beijing 100191, China
3. Beijing Engineering Technological Research Center of High-Efficient and Green CNC Machining Process, Beijing 100191, China
Download: HTML     PDF(1861KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The high fidelity of CAD model in simulation test has been unsatisfied with the continuous improvement of product assembly quality requirements. A rapid reconstruction method of simulation model based on point cloud and design model was proposed in order to express the actual machining quality of parts quickly and accurately in the simulation experiment. The method of "one-plane and two-hole registration" was adopted to register the measured point cloud data to the design model. The control vertices in the boundary of the design model were extracted for surface reconstruction. Non-uniform rational B-spline (NURBS) method was used to fit the surface. The partial and efficient replacement of the model surface was realized, which combined boundary representation (BREP) and constructive solid geometry (CSG), with the simulation requirements. A rapid reconstruction module based on actual measured point cloud and design model, and a digital preinstalled module based on extensible markup language (XML) and fully features matched, were developed in CATIA. The reconstruction accuracy and efficiency of the proposed method, as well as its high efficiency and accuracy in the simulation of preassembly, were verified by taking a typical part of an aviation enterprise and assembly of aircraft door as examples.



Key wordspoint cloud refactoring      point cloud registration      point cloud extraction      non-uniform?rational?B-spline?(NURBS)      surface replacement     
Received: 29 April 2020      Published: 10 June 2021
CLC:  TP 391  
Fund:  工信部2017民用飞机专项科研技术资助项目
Corresponding Authors: Yong YU     E-mail: 15600260806@163.com;yuyong@buaa.edu.cn
Cite this article:

Jun CAI,Gang ZHAO,Yong YU,Qiang-wei BAO,Sheng DAI. A rapid reconstruction method of simulation model based on point cloud and design model. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 905-916.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.05.011     OR     http://www.zjujournals.com/eng/Y2021/V55/I5/905


基于点云和设计模型的仿真模型快速重构方法

随着产品装配质量要求的不断提高,为了在CAD模型仿真试验中快速且准确地表达零件实际加工质量,提出基于点云和设计模型的仿真模型快速重构方法. 采用“一面两孔配准”方法,将零件实测点云数据配准到设计模型上;根据设计模型边界提取出曲面重构所需的控制顶点;采用非均匀有理B样条(NURBS)方法对控制顶点进行曲面拟合;根据仿真需求,结合边界表示法(BREP)和构造实体表示法(CSG)实现模型表面的局部和快速替换. 在CATIA中开发基于实测点云数据和设计模型的仿真模型快速重构模块,和基于可拓展标记语言(XML)和特征完全匹配的数字预装配模块. 以某航空企业典型零件和舱门预装配为例,验证该方法的重构精度和效率及其在预装配仿真中的高效性和准确性.


关键词: 点云重构,  点云配准,  点云提取,  非均匀有理 B 样条(NURBS),  曲面替换 
Fig.1 Point cloud registration flow chart based on one plane and two holes
Fig.2 Local coordinates creating on point cloud and model
Fig.3 Transformation of coordinate system of target point
Fig.4 Uniform grid boxes creation on NUV plane
Fig.5 Flow of surface replacement based on BREP/CSG
Fig.6 Flow of simulation for digital preassembly
装配信息 提取的元素
零件 零件的装配顺序
零件间约束关系 约束类型、约束值、被约束的几何要素
三维标注 尺寸、公差、基准、关联的几何要素
零件的加工特征 特征类型、设计参数、构成的几何要素
Tab.1 Extraction of assembly information
Fig.7 XML document recording assembly information
形状特征组合 匹配参数
旋转面+平面 旋转轴+平面中心
旋转面+球面 旋转轴+球心
2个旋转面+拉伸面 2旋转轴+拉伸方向+拉伸起点
3个球面 3球心
2个球面+平面 2球心+平面中心
球面+2个平面 球心+2个平面中心
球面+平面+拉伸面 球心+平面中心+拉伸方向
Tab.2 Shape features and matching parameters
组件 型号 组件 型号
系统硬件 Intel(R)Core(TM)
i5-6500 CPU @3.2 GHz(16 G)
设计工具 CATIA V5R18
操作系统 Windows 7,64 bit 开发环境 RADEV5R18
开发语言 C/C++ 函数库 CAA V5R18
开发工具 VS 2005 ? ?
Tab.3 Development environment and tools for component
Fig.8 Interface of design model reconstruction based on CAA development
Fig.9 Measured point cloud data of test part
参数 取值 参数 取值
尺寸 147×80×310 mm 光源 14束激光线
扫描速率 480000点/秒 分辨率 0.02 mm
工作距离 300 mm 工作温度 ?10°~40°
测量范围 0.1~8.0 m 测量精度 0.02 mm
Tab.4 Technical parameters of PTS-HS717 handheld 3D laser scanner
Fig.10 Schematic diagram of ane-plane and two-hole registration
Fig.11 Results of point cloud segmentation
Fig.12 Comparison of point cloud simplification effect
Fig.13 Reconstructed NURBS surface
Fig.14 Substitution of NURBS surface
Fig.15 Traditional flow of model reconstruction
Fig.16 Improved flow of model reconstruction
方法 传统重构方法用时/s 本研究重构算法用时/s
点云配准 192.3 28.6
点云提取 37.4 5.8
曲面重构 5.7 12.0
曲面替换 235.8 5.6
合计 471.2 52.0
Tab.5 Time table for different refactoring methods
Fig.17 Deviation analysis of different reconstruction methods
关键零件精度 指标
蒙皮外形轮廓度 $ \leqslant $0.25 mm
边框垂直度 $ \leqslant $0.40 mm
主轴孔的同轴度 $ \leqslant $0.40 mm
Tab.6 Key parts accuracy requirements for aircraft door assembly
Fig.18 Model of aircraft door assembly
Fig.19 XML document lightweighted
Fig.20 Model comparison diagram before and after reconstruction
Fig.21 XML document after replacement of part
Fig.22 Aircraft door assembly with side wall reconstruction
Fig.23 Interference analysis of aircraft door assembly
统计项 零件数量/个 占用内存/kB 装配体模型重构用时/s 精度检测用时/s 装配精度/mm
蒙皮轮廓度 边框垂直度 主轴同轴度
轻量化前 97 47022 243.2 6.5 0 0 0
轻量化和模型替换后 16 8237 50.3 6.7 0.27 0.31 0.38
工厂检测 97 ? ? 7200.0 0.29 0.34 0.37
Tab.7 Data of aircraft door pre-installation
[1]   张哲, 许宏丽, 尹辉 一种基于关键点选择的快速点云配准算法[J]. 激光与光电子学进展, 2017, 54 (12): 155- 163
ZHANG Zhe, XU Hong-li, YIN Hui A fast point cloud registration algorithm based on key point selection[J]. Laser and Optoelectronics Progress, 2017, 54 (12): 155- 163
[2]   杨明, 张冰, 王子才 建模与仿真技术发展趋势分析[J]. 系统仿真学报, 2004, (9): 1901- 1913
YANG Ming, ZHANG Bing, WANG Zi-cai The analysis of modeling and simulation development direction[J]. Journal of System Simulation, 2004, (9): 1901- 1913
doi: 10.3969/j.issn.1004-731X.2004.09.014
[3]   侯志霞. 民用飞机零部件制造过程数字孪生模型构建及应用[M]. 北京: 中国航空制造技术研究院, 2018.
[4]   OWEN S J, STATEN M L, CANANN S A, et al Q-Morph: an indirect approach to advancing front quad meshing[J]. International Journal for Numerical Methods in Engineering, 1999, 44: 1317- 1340
doi: 10.1002/(SICI)1097-0207(19990330)44:9<1317::AID-NME532>3.0.CO;2-N
[5]   王伟杰. 网格转化算法及复杂曲面重构研究[D]. 江西: 南昌大学, 2015.
WANG Wei-jie. The research of mesh conversion algorithm and complex surface reconstruction[D]. Jiangxi: Nanchang University, 2015.
[6]   MA W, KRUTH J P NURBS curve and surface fitting for reverse engineering[J]. The International Journal of Advanced Manufacturing Technology, 1998, 14 (12): 918- 927
doi: 10.1007/BF01179082
[7]   黄建梅. 基于深度图像的快速反求系统数据处理技术的研究[D]. 黑龙江: 哈尔滨理工大学, 2005.
HUANG Jian-mei. Research on technology of data processing of the rapid reverse system based on depth image[D]. Heilongjiang: Harbin University of Science and Technology, 2005.
[8]   张甜田. 基于分割点云的NURBS曲面三维重构方法研究[D]. 北京: 北京工业大学, 2013.
ZHANG Tian-tian. Research on the three-dimensional reconstruction of NURBS surface based on the segmentation of point cloud[D]. Beijing: Beijing University of Technology, 2013.
[9]   DONG Y D, SU F, SUN G J, et al A feature-based method for tire pattern reverse modeling[J]. Advances in Engineering Software, 2018, 124: 73- 89
doi: 10.1016/j.advengsoft.2018.08.008
[10]   王海舟, 张丽艳, 周良明, 等 批量复杂结构毛坯的快速逆向建模技术研究[J]. 中国机械工程, 2014, 25 (14): 1935- 1940
WANG Hai-zhou, ZHANG Li-yan, ZHOU Liang-ming, et al Rapid reverse modeling of batched complex blanks[J]. China Mechanical Engineering, 2014, 25 (14): 1935- 1940
doi: 10.3969/j.issn.1004-132X.2014.14.018
[11]   江旭, 耿楠, 张志毅, 等 基于假设检验匹配约束的点云配准算法研究[J]. 计算机应用研究, 2020, (3): 1- 8
JIANG Xu, GENG Nan, ZHANG Zhi-yi, et al Research of point cloud registration algorithm based on hypothesis test matching constraints[J]. Application Research of Computers, 2020, (3): 1- 8
[12]   BESL P J A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (3): 239- 256
[13]   杨长强, 叶泽田 一种基于点对应的激光扫描仪外方位参数检校方法[J]. 测绘科学, 2011, 36 (5): 190- 192
YANG Chang-qiang, YE Ze-tian A calibration method for laser scanner's external orientation by corresponding points[J]. Science of Surveying and Mapping, 2011, 36 (5): 190- 192
[14]   陈广锋, 刘文剑, 金天国 工件定位特征识别与定位方案自动推理算法[J]. 哈尔滨工业大学学报, 2005, (2): 238- 241
CHEN Guang-feng, LIU Wen-jian, JIN Tian-guo Focating feature recognition and locating design automation[J]. Journal of Harbin Institute of Technology, 2005, (2): 238- 241
doi: 10.3321/j.issn:0367-6234.2005.02.027
[15]   高瑞, 李泷杲, 黄翔, 等 复杂曲面零件散乱点云特征点提取[J]. 航空制造技术, 2017, (13): 60- 65
GAO Rui, LI Long-gao, HUANG Xiang, et al Extracting feature points in scattered point cloud of complex surface parts[J]. Aeronautical Manufacturing Technology, 2017, (13): 60- 65
[16]   周培德. 计算几何: 算法设计与分析[M]. 北京: 清华大学出版社, 2008.
[17]   陈瑞卿, 周健, 虞烈 一种判断点与多边形关系的快速算法[J]. 西安交通大学学报, 2007, 41 (1): 59- 63
CHEN Rui-qing, ZHOU Jian, YU Lie Fast method to determine spatial relationship between point and polygon[J]. Journal of Xi'an Jiaotong University, 2007, 41 (1): 59- 63
doi: 10.3321/j.issn:0253-987X.2007.01.014
[18]   MARTIN R R, STROUD I A, MARSHAL A D. Data reduction for reverse engineering[M]. Budapest: Computer and Automation Institute of Hungarian Academy of Science, 1996.
[19]   施法中. 计算机辅助几何设计与非均匀有理B样条[M]. 北京: 高等教育出版社, 2001.
[20]   李圆, 张献州, 陈霄, 等 基于NURBS的轨道板点云外形尺寸检测研究[J]. 铁道标准设计, 2020, 64 (3): 48- 53
LI Yuan, ZHANG Xiang-zhou, CHEN Xiao, et al Research on track slab point cloud dimensional deviation inspection based on NURBS[J]. Railway Standard Design, 2020, 64 (3): 48- 53
[21]   VERGEEST S M CAD surface data exchang using STEP[J]. Computer Aided Design, 1991, 23 (4): 269- 281
doi: 10.1016/0010-4485(91)90067-7
[22]   PIEGL L Modifying the shape of rational B-splines, part 2: surface[J]. Computer-Aided Design, 1989, 21 (9): 538- 546
doi: 10.1016/0010-4485(89)90014-6
[23]   DAUM S, BORRMANN A Processing of topological BIM queries using boundary representation based methods[J]. Elsevier Journal of Advanced Engineering Informatics, 2014, 6 (1): 273- 287
[24]   罗振伟, 梅中义 基于测量数据的飞机数字化预装配技术[J]. 航空制造技术, 2013, (20): 99- 102
LUO Zhen-wei, MEI Zhong-yi Aircraft digital preassembly technology based on measured data[J]. Aeronautical Manufacturing Technology, 2013, (20): 99- 102
doi: 10.3969/j.issn.1671-833X.2013.20.019
[25]   张敏, 田锡天, 耿俊浩, 等 基于预装配精度分析的飞机关键装配工序质量控制技术[J]. 航空制造技术, 2019, 62 (5): 51- 56
ZHANG Min, TIAN Xi-tian, GEN Jun-hao, et al Quality control technology for key assembly procedure of aircraft based on preassembly precision analysis[J]. Aeronautical Manufacturing Technology, 2019, 62 (5): 51- 56
[26]   产品几何技术规范(GPS) 几何公差检测与验证: GB/T 1958—2017 [S]. 北京: 中国国家标准化管理委员会, 2017.
[27]   李剑. 基于激光测量的自由曲面数字化制造基础技术研究[D]. 杭州: 浙江大学, 2008.
LI Jian. Research on the digital manufacturing technology of free from surface based on laser measurement[D]. Hangzhou: Zhejiang University, 2008.
[1] Shou-guo ZHENG,Yong-de ZHANG,Wen-tian XIE,Hu FAN,Qing WANG. Aircraft final assembly line modeling based on digital twin[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 843-854.
[2] Shi-lin ZHANG,Si-ming MA,Zi-qian GU. Large margin metric learning based vehicle re-identification method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 948-956.
[3] Peng SONG,De-dong YANG,Chang LI,Chang GUO. An adaptive siamese network tracking algorithm based on global feature channel recognition[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 966-975.
[4] Hong-li WANG,Bin GUO,Si-cong LIU,Jia-qi LIU,Yun-gang WU,Zhi-wen YU. End context-adaptative deep sensing model with edge-end collaboration[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 626-638.
[5] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[6] Ying-jie ZHENG,Song-rong WU,Ruo-yu WEI,Zhen-wei TU,Jin LIAO,Dong LIU. Metro location point matching and false alarm elimination based on FCM algorithm of target image[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 586-593.
[7] Zi-ye YONG,Ji-chang GUO,Chong-yi LI. weakly supervised underwater image enhancement algorithm incorporating attention mechanism[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 555-562.
[8] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[9] Hui-ya HU,Shao-yan GAI,Fei-peng DA. Face frontalization based on generative adversarial network[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 116-123.
[10] Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.
[11] You-kang DUAN,Xiao-gang CHEN,Jian GUI,Bin MA,Shun-fen LI,Zhi-tang SONG. Continuous kinematics prediction of lower limbs based on phase division[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 89-95.
[12] Tai-heng ZHANG,Biao MEI,Lei QIAO,Hao-jie YANG,Wei-dong ZHU. Detection method for composite hole guided by texture boundary[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2294-2300.
[13] Dong LIANG,Xin-yu LIU,Jia-xing PAN,Han SUN,Wen-jun ZHOU,Shun’ichi KANEKO. Foreground segmentation under dynamic background based on self-updating co-occurrence pixel[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2405-2413.
[14] Yao JIN,Wei ZHANG. Real-time fire detection algorithm with Anchor-Free network architecture[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2430-2436.
[15] Zi-yu JIA,You-fang LIN,Hong-jun ZHANG,Jing WANG. Sleep stage classification model based ondeep convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1899-1905.