1. School of Electrical Engineering, Southeast University, Nanjing 210096, China 2. Hefei Power Supply Company, State Grid Anhui Electric Power Co. Ltd, Hefei 230000, China 3. Maintenance Branch, State Grid Jiangsu Electric Power Co. Ltd, Nanjing 211102, China
In order to propel power consumption orderly and ensure the security of electricity distribution system in residential area, the concept of task offloading in the communication field was expanded and applied to residential area information management, the electricity information management system in residential area and the optimal offloading strategy of computing tasks based on edge calculation were also proposed. The definition of edge computing was clarified, the concept of task offloading was extended from the mobile edge computing scenario, as well as the role of alternate edge node was added in the residential area electricity information management model. The framework and process of task offloading were proposed, at the same time, the calculation tasks generated by electrical equipment in residential areas were analyzed. Then, the Nash equilibrium was achieved to obtain the optimal task offloading decision by establishing a computing model and a multi-user game model. An example was used to verify the necessity of the alternate edge node and the superiority of the proposed strategy compared with the traditional computing model. The proposed strategy brings new ideas and methods for the data processing in the residential area electricity information management in the era of Internet of all things.
Zhong CHEN,Xiao XU,Hai-wei WANG,Hong-hao LUO,Xuan CHEN. Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 917-926.
Fig.1Composition of electricity information management system in residential area
Fig.2Information interaction framework of residential area
终端类型
产生任务的数据量/ kB
产生任务的计算量/ cycles
计算结果量/ kB
计算能力/ GHz
CPU功率/ W
计算内存
对于时延和 能耗的敏感度
终端设备(ECN)
$b(n) $
$ d(n) $
$ r(n) $
$ f(n) $
$ c(n) $
?
$ \lambda_{\rm{t}} (n) $、 $ \lambda_{\rm{e}} (n)$
备用边缘节点(AECN)
?
?
?
$ f(m) $
$ c(m) $
$k(m) $
?
云平台
?
?
?
$ f(c) $
$ c(c) $
?
?
Tab.1Parameter setting in task unload framework
Fig.3Process of task unloading optimization
终端设 备序号
$ c(n)$/W
$b(n) $/kB
$d(n) $/cycles
$r(n) $/kB
$f(n) $/GHz
${\lambda _{\rm{t}}}(n)$
${\lambda _{\rm{e}}}(n)$
1
4
1000
3000
25
10
0
1.0
2
5
500
1000
20
5
0.2
0.8
3
6
2000
4000
250
12
0.5
0.5
4
7
1500
2000
2000
8
0.8
0.2
5
7
2000
4000
250
12
1.0
0
6
6
500
1000
20
5
0.2
0.8
7
5
1000
3000
25
10
0.8
0.2
8
4
2000
4000
250
12
0.5
0.5
9
5
500
1000
20
5
0.2
0.8
10
4
1500
2000
2000
8
0.8
0.2
11
6
1000
3000
25
10
0.5
0.5
12
5
500
1000
20
5
0.5
0.5
13
7
1500
2000
2000
8
1.0
0
14
5
500
1000
20
5
0
1.0
15
4
1000
3000
25
10
0.5
0.5
$\vdots $
$\vdots $
$\vdots $
$\vdots $
$\vdots $
$\vdots $
$\vdots $
$\vdots $
Tab.2Each terminal parameter of ECN
参数
数值
备用边缘节点计算能力/GHz
15
备用边缘节点容量/kB
6×106
信道带宽/MHz
1
移动设备发射功率/W
2
移动设备接收功率/W
2
背景噪音/dBm
?80
信道增益
0.9
云平台计算能力/GHz
40
云平台容量/kB
5×108
MEC与中心云数据传输速率/Mbps
106
云端处理CPU单位功率/W
15
云端发射功率/W
2
云端设备接收功率/W
2
Tab.3Parameter of AECN and cloud platform
类型
终端 数量
须上传 数据量/kB
任务计算 量/(105 cycles)
结果数 据量/kB
计算能 力/(106 cycles)
分布式电源
10
1000
3000
25
500
电动汽车
16
500
1000
20
800
储能设备
13
800
2000
100
600
家庭电力信息
11
2000
4000
250
1200
Tab.4Terminal parameter for different types of computing tasks
An
Xn
An
Xn
An
Xn
An
Xn
1
1
1
1
?1
1
5
1
2
1
?1
1
?1
1
?1
1
?1
1
1
1
?1
1
?1
1
?1
1
4
1
1
1
3
1
?1
1
?1
1
?1
1
2
1
4
1
2
1
?1
1
?1
1
?1
1
?1
1
?1
1
1
1
?1
1
4
1
4
1
?1
1
3
1
?1
1
2
1
?1
1
?1
1
1
1
5
1
3
1
?1
1
?1
1
5
1
?1
1
3
1
?1
1
?1
1
?
?
?1
1
?1
1
?1
1
?
?
Tab.5Game result of task unloading
Fig.4Change curve of parameters with game time
Fig.5Trend of number of beneficial unload tasks
Fig.6Trend of number of users selecting to unload task
$\lambda_{\rm{e}} $∶ $\lambda_{\rm{t}} $
Noff
$\lambda_{\rm{e}} $∶ $\lambda_{\rm{t}} $
Noff
1∶0
0
4∶6
34
7∶3
12
3∶7
47
6∶4
16
0∶1
50
5∶5
22
?
?
Tab.6Influence of energy consumption and time delay ratio on unloading decision
Fig.7Comparison of load results of three calculation methods
Fig.8Load results of different calculation modes under different preference settings
Fig.9Experimental comparison results with and without AECN
[1]
徐建军, 王保娥, 闫丽梅, 等 混合能源协同控制的智能家庭能源优化控制策略[J]. 电工技术学报, 2017, 32 (12): 214- 223 XU Jian-jun, WANG Bao-e, YAN Li-mei, et al The strategy of the smart home energy optimization control of the hybrid energy coordinated control[J]. Transaction of Electrotechnical Society, 2017, 32 (12): 214- 223
[2]
祁兵, 夏琰, 李彬, 等 基于边缘计算的家庭能源管理系统: 架构、关键技术及实现方式[J]. 电力建设, 2018, 39 (3): 33- 41 QI Bing, XIA Yan, LI Bin, et al Family energy management system based on edge computing: architecture, key technology and implementation[J]. Electric Power Construction, 2018, 39 (3): 33- 41
doi: 10.3969/j.issn.1000-7229.2018.03.004
[3]
徐晓, 陈中, 丁宏恩, 等 面向区域售电公司的边缘计算架构设计探讨[J]. 电力建设, 2019, 40 (7): 41- 47 XU Xiao, CHEN Zhong, DING Hong-en, et al Discussion on the design of edge computing architecture for regional electricity retailer[J]. Electric Power Construction, 2019, 40 (7): 41- 47
doi: 10.3969/j.issn.1000-7229.2019.07.006
HAN G J, LIU L, CHAN S, et al HySense: a hybrid mobile crowd Sensing framework for sensing opportunities compensation under dynamic coverage constraint[J]. IEEE Communications Magazine, 2017, 55 (3): 93- 99
doi: 10.1109/MCOM.2017.1600658CM
[6]
OLARIU S, KHALIL I, ABUELELA M Taking VANET to the clouds[J]. International Journal of Pervasive Computing and Communications, 2011, 7 (1): 7- 21
doi: 10.1108/17427371111123577
[7]
MACH P, BECVAR Z Mobile edge computing: a survey on architecture and computation offloading[J]. IEEE Communications Surveys and Tutorials, 2017, 19 (3): 1628- 1656
doi: 10.1109/COMST.2017.2682318
[8]
FLORES H, HUI P, TARKOMA S, et al Mobile code offloading: from concept to practice and beyond[J]. IEEE Communications Magazine, 2015, 53 (3): 80- 88
doi: 10.1109/MCOM.2015.7060486
[9]
卢海峰, 顾春华, 罗飞, 等 基于深度强化学习的移动边缘计算任务卸载研究[J]. 计算机研究与发展, 2020, 57 (7): 1539- 1554 LU Hai-feng, GU Chun-hua, LUO Fei, et al Research on task offloading based on deep reinforcement leraring in mobile edge computing[J]. Journal of Computer Research and Development, 2020, 57 (7): 1539- 1554
doi: 10.7544/issn1000-1239.2020.20190291
[10]
闫伟, 申滨, 刘笑笑 基于自适应遗传算法的MEC任务卸载及资源分配[J]. 电子技术应用, 2020, 46 (8): 95- 100 YAN Wei, SHEN Bin, LIU Xiao-xiao Offloading and resource allocation of MEC based on adaptive genetic algorithm[J]. Application of Electronic Technique, 2020, 46 (8): 95- 100
张文杰, 魏振春, 徐俊逸, 等 移动边缘计算中的低能耗任务卸载决策算法[J]. 合肥工业大学学报: 自然科学版, 2020, 43 (6): 770- 776 ZHANG Wen-jie, WEI Zhen-chun, XU Jun-yi, et al Task-offloading decision algorithm for reducing energy consumption of base stations in MEC[J]. Journal of Hefei University of Technology: Natural Science, 2020, 43 (6): 770- 776
doi: 10.3969/j.issn.1003-5060.2020.06.010
[13]
郭煜 移动边缘计算中带有缓存机制的任务卸载策略[J]. 计算机应用与软件, 2019, 36 (6): 114- 119 GUO Yu Tasks offloading strategy with caching mechanism in mobile margin computing[J]. Computer Applications and Software, 2019, 36 (6): 114- 119
doi: 10.3969/j.issn.1000-386x.2019.06.023
[14]
MAO Y, ZHANG J, LETAIEFK B Dynamic computation offloading for mobile-edge computing with energy harvesting devices[J]. IEEE Journal on Selected Areas in Communications, 2016, 34 (12): 3590- 3605
doi: 10.1109/JSAC.2016.2611964
[15]
谷晓会, 章国安 移动边缘计算在车载网中的应用综述[J]. 计算机应用研究, 2020, 37 (6): 1615- 1621 GU Xiao-hui, ZHANG Guo-an Survey of mobile edge computing applications in vehicular networks[J]. Application Research of Computers, 2020, 37 (6): 1615- 1621
[16]
张海波, 栾秋季, 朱江, 等 基于移动边缘计算的V2X任务卸载方案[J]. 电子与信息学报, 2018, 40 (11): 2736- 2743 ZHANG Hai-bo, LUAN Qiu-ji, ZHU Jiang, et al V2X task offloading scheme based on mobile edge computing[J]. Journal of Electronics and Information Technology, 2018, 40 (11): 2736- 2743
[17]
ZHANG K, MAO Y M, LENG S P, et al Predictive offloading in cloud-driven vehicles: using mobile-edge computing for a promising network paradigm[J]. IEEE Vehicular Technology Magazine, 2017, 12 (2): 36- 44
doi: 10.1109/MVT.2017.2668838
[18]
景泽伟, 杨清海, 秦猛 移动边缘计算中的时延和能耗均衡优化算法[J]. 北京邮电大学学报, 2020, 43 (2): 110- 115 JING Ze-wei, YANG Qing-hai, QING Meng A delay and energy tradeoff optimization algorithm for task offloading in mobile-edge computing[J]. Journal of Beijing University of Posts and Telecommunications Networks, 2020, 43 (2): 110- 115
[19]
田辉, 范绍帅, 吕昕晨, 等 面向5G需求的移动边缘计算[J]. 北京邮电大学学报, 2017, 40 (2): 1- 10 TIAN Hui, FAN Shao-shuai, LV Xin-chen, et al Mobile edge computing for 5G requirements[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40 (2): 1- 10
[20]
孙毅, 刘昌利, 刘迪, 等 面向居民用户群的多时间尺度需求响应协同策略[J]. 电网技术, 2019, 43 (11): 4170- 4177 SUN Yi, LIU Chang-li, LIU Di, et al A multi-time scale demand response collaborative strategy for residential user groups[J]. Power System Technology, 2019, 43 (11): 4170- 4177
[21]
MO W, YANG C, CHEN X, et al Optimal charging navigation strategy design for rapid charging electric vehicles[J]. Energies, 2019, 12 (6): 962
doi: 10.3390/en12060962
[22]
李勤超, 周立中, 赵艳龙, 等 基于分布式光伏典型日曲线的统调负荷预测方法[J]. 浙江电力, 2019, 38 (6): 113- 117 LI Qin-chao, ZHOU Li-zhong, ZHAO Yan-long, et al A unified dispatch load forecasting method based on the typical daily load curve of distributed PV power[J]. Zhejiang Electric Power, 2019, 38 (6): 113- 117
[23]
LOGHIN D, RAMAPANTULU L, TEOY M. On understanding time, energy and cost performance of wimpy heterogeneous systems for edge computing [C]// 2017 IEEE International Conference on Edge Computing. Honolulu: IEEE, 2017: 1-8.
[24]
谢人超, 廉晓飞, 贾庆民, 等 移动边缘计算卸载技术综述[J]. 通信学报, 2018, 39 (11): 138- 155 XIE Ren-chao, LIAN Xiao-fei, JIA Qing-min, et al Survey on computation offloading in mobile edge computing[J]. Journal on Communications, 2018, 39 (11): 138- 155
doi: 10.11959/j.issn.1000-436x.2018215
[25]
BICER T, CHIU D, AGRAWAL G. Time and cost sensitive data-intensive computing on hybrid clouds [C]// 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Ottawa: IEEE, 2012: 636-643.
[26]
刘国强. 基于移动边缘计算的任务卸载策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. LIU Guo-qiang. Research on offloading strategy based on mobile edge computing [D]. Harbin: Harbin Institute of Technology, 2018.