Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (12): 2414-2422    DOI: 10.3785/j.issn.1008-973X.2018.12.020
Electrical Engineering     
Energy efficient routing for wireless sensor networks in intertidal environment
LAI Xiao-han1, WEN Hao-xiang1,2, CHEN Long-dao1
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. School of Physics and Mechanical and Electrical Engineering, Shaoguan University, Shaoguan 512205, China
Download:   PDF(1233KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A wireless sensor network deployed in intertidal environment (IT-WSN) was deeply investigated. An improved routing algorithm called predicted remaining transmission count (PRTX) was proposed. PRTX combined parameters including end-to-end delay, residual energy, distances between neighbor nodes and link quality to construct a comprehensive routing metric. Moreover, the exponentially weighted moving average algorithm was applied to enhance stability of routing selection. The simulation results demonstrate that the proposed PRTX routing algorithm improves the performance of the network lifetime by about 19% compared with the classical expected transmission count (ETX) algorithm, while guaranteeing high packet delivery ratio. Furthermore, PRTX algorithm performs well with different node communication radiuses. Additionally, both the simulation and the field test results demonstrate that PRTX algorithm deceases the end-to-end delay by about 10% compared with the classical ETX algorithm, and improves the equilibrium of network energy consumption.



Received: 22 November 2017      Published: 13 December 2018
CLC:  TP393  
Cite this article:

LAI Xiao-han, WEN Hao-xiang, CHEN Long-dao. Energy efficient routing for wireless sensor networks in intertidal environment. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2414-2422.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.12.020     OR     http://www.zjujournals.com/eng/Y2018/V52/I12/2414


潮间带无线传感器网络路由算法

以潮间带无线传感器网络(IT-WSN)为例进行深入研究,提出期望剩余传输次数(PRTX)算法.PRTX算法充分考虑网络端到端延迟时间、节点剩余能量、邻居节点之间的距离,以及链路质量,形成一个综合性的路由判据,并利用指数加权平均算法加强路由选择的稳定性.仿真实验结果表明,PRTX路由算法在网络生命周期上比经典算法期望传输次数(ETX)提升了约19%,保障了较高的收包率,并且在节点通信距离变化时具有较好的性能稳定性.同时仿真实验与实际实验都表明,PRTX算法在网络端到端延迟时间上比经典的ETX算法降低了约10%,并提升了网络能量消耗的均衡性.

[1] 洪锋, 褚红伟, 金宗科, 等. 无线传感器网应用系统最新进展综述[J]. 计算机研究与发展, 2010, 47(增2):81-87 HONG Feng, CHU Hong-wei, JIN Zong-ke, et al. Review of recent progress on wireless sensor network applications[J]. Journal of Computer Research and Development, 2010, 47(Suppl.2):81-87
[2] A. A K S, OVSTHUS K, KRISTENSEN L M. An industrial perspective on wireless sensor networks:a survey of requirements, protocols, and challenges[J]. IEEE Communications Surveys and Tutorials, 2014, 16(3):1391-1412.
[3] 肖璟博, 陈敏, 刘云涛, 等. 水质监测传感器数据采集节点的设计和实现[J]. 浙江大学学报:工学版, 2017, 51(7):1446-1452 XIAO Jing-bo, CHEN Min, LIU Yun-tao, et al. Design and implementation of sensor data acquisition node for water monitoring[J]. Journal of Zhejiang University:Engineering Science, 2017, 51(7):1446-1452
[4] HUANG P, LI X, SOITANI S, et al. The evolution of MAC protocols in wireless sensor networks:a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(1):101-120.
[5] 赵小川, 周正, 秦智超. 基于双簇头交替和压缩感知的WSN路由协议[J]. 软件学报, 2012, 23(增1):17-24 ZHAO Xiao-chuan, ZHOU Zheng, QIN Zhi-Chao. Multi-hop routing protocol based on double cluster head alternation and compressed sensing for wireless sensor networks[J]. Journal of Software, 2012, 23(Suppl.1):17-24
[6] QAISAR S, BILAL R M, IQBAL W, et al. Compressive sensing:from theory to applications, a survey[J]. Journal of Communications and Networks, 2013, 15(5):443-456.
[7] CARRANO R C, PASSOS D, MAGALHAES L C S, et al. Survey and taxonomy of duty cycling mechanisms in wireless sensor networks[J]. IEEE Communications Surveys and Tutorials, 2014, 16(1):181-194.
[8] 文耀锋, 杨昊, 陈裕泉, 等. 无线传感器网络中基于能量模型的簇结构算法[J]. 浙江大学学报:工学版, 2009, 43(4):677-681 WEN Yao-Feng, YANG Hao, CHEN Yu-Quan, et al. Clusters structure algorithm based on energy model in wireless sensor network[J]. Journal of Zhejiang University:Engineering Science, 2009, 43(4):677-681
[9] LIU X. Atypical hierarchical routing protocols for wireless sensor networks:a review[J]. IEEE Sensors Journal, 2015, 15(10):5372-5383.
[10] YAN J, ZHOU M, DING Z. Recent advances in energy-efficient routing protocols for wireless sensor networks:a review[J]. IEEE Access, 2016, 4:5673-5686.
[11] PANTAZIS N A, NIKOLIDAKIS S A, VERGADOS D D. Energy-efficient routing protocols in wireless sensor networks:a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(2):551-591.
[12] GNAWALI O, FONSECA R, JAMIESON K, et al. Collection tree protocol[C]//ACM Conference on Embedded Networked Sensor Systems. New York:ACM, 2009:1-14.
[13] COUTO D S J D, AGUAYO D, BICKET J, et al. A high-throughput path metric for multi-hop wireless routing[J]. Wireless Networks, 2005, 11(4):419-434.
[14] DRAVES R, PADHYE J, ZILL B. Routing in multi-radio, multi-hop wireless mesh networks[C]//ACM International Conference on Mobile Computing and Networking. New York:ACM, 2004:114-128.
[15] LAN T N, BEURAN R, SHINODA Y. A load-aware routing metric for wireless mesh networks[C]//IEEE Symposium on Computers and Communications. Marrakech:IEEE, 2008:429-435.
[16] GRUBMAN T, ?EKERCIOGLU Y A, MOORE N. Opportunistic routing in low duty-cycle wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2014, 10(4):1-39.
[17] 高庆, 李善平, 杨朝晖. 基于虚拟场的能量高效传感器网络地理路由[J]. 浙江大学学报:工学版, 2012, 46(1):98-104 GAO Qing, LI Shan-ping, YANG Zhao-hui. Virtual force-field based energy efficient geo-routing in wireless sensor network[J]. Journal of Zhejiang University:Engineering Science, 2012, 46(1):98-104
[18] MAO G, FIDAN B, ANDERSON B D O. Wireless sensor network localization techniques[J]. Computer Networks, 2007, 51(10):2529-2553.
[19] COTUK H, BICAKCI K, TAVLI B, et al. The impact of transmission power control strategies on lifetime of wireless sensor networks[J]. IEEE Transactions on Computers, 2014, 63(11):2866-2879.
[20] HEINZELMAN W B, CHANDRAKASAN A P, BALAKRISHNAN H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002, 1(4):660-670.
[21] ANDERSEN J B, RAPPAPORT T S, YOSHIDA S. Propagation measurements and models for wireless communications channels[J]. IEEE Communications Magazine, 1995, 33(1):42-49.
[22] MATOLAK D W, SUN R. Air-ground channel characterization for unmanned aircraft systems. Part I:methods, measurements, and models for over-water settings[J]. IEEE Transactions on Vehicular Technology, 2017, 66(1):26-44.
[23] PARIS S, NITA-ROTARU C, MARTIGNON F, et al. Cross-layer metrics for reliable routing in wireless mesh networks[J]. IEEE/ACM Transactions on Networking, 2013, 21(3):1003-1016.
[24] WANG S S, CHEN Z P. LCM:a link-aware clustering mechanism for energy-efficient routing in wireless sensor networks[J]. IEEE Sensors Journal, 2013, 13(2):728-736.

[1] LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 99-106.
[2] LIU Zhen, WU Ze-hui, CAO Yan, WEI Qiang. Software vulnerable code reuse detection method based on vulnerability fingerprint[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2180-2190.
[3] QI Xiao-gang, WANG Zhen-yu, LIU Li-fang, LIU Xing-cheng, MA Jiu-long. Reliable and efficient routing of wireless sensors and actuator networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1964-1972.
[4] HU Gang, XU Xiang Xiang, GUO Xiu-cheng. Importance calculation of complex network nodes based on interpretive structural modeling method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1989-1997.
[5] REN Zhi-yuan, HOU Xiang-wang, GUO Kai, ZHANG Hai-lin, CHEN Chen. Distributed satellite cloud-fog network and strategy of latency and power consumption[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1474-1481.
[6] JIA Wen-chao, HU Rong-gui, SHI Fan, XU Cheng-xi. Injection vulnerability threat detection method with multi-feature correlation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 524-530.
[7] LI Bing, JIN Tao, CHEN Shuai. Method to improve reliability of SRAM PUFs key generation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 133-141.
[8] YU Yang, XIA Chun-he, HU Xiao-yun. Defense scheme generation method using mixed path attack graph[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1745-1759.
[9] LUO You-qiang, LIU Sheng-li, YAN Meng, WU Dong-ying. DNS tunnel Trojan detection method based on communication behavior analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1780-1787.
[10] YIN Ge-Ting, ZHOU Bei, ZHANG Shuai, XU Bin, CHEN Yi-Xi, JIANG Dan. QoS-based bottom-up service replacement for Web service composition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 700-709.
[11] WANG Rui-Qin, KONG Fan-Qing, BO Dun. Unsupervised word sense disambiguation based on WordNet[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 732-737.
[12] ZHOU Jiang, YING Jing, TUN Meng-Hui. Multifactor prediction routing protocol based on
characteristic categorization of opportunistic networks
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 413-419.
[13] OU Yang-Yang, CHEN Yu-Feng, CHEN Xi-Yuan, et al. Ontology modeling of domain knowledge in semantic learning Web[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(09): 1591-1596.
[14] KONG Xiang-Jie, CHEN Guo-Jiang, LIANG Tong-Hai. Intelligent coordinated control of traffic flow on road network  with bus-priority[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1026-1031.
[15] WANG Jian, SUN Jian-Ling, WANG Xin-Yu, et al. Partial preemptive real-time scheduling algorithm in software fault-tolerant model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1047-1052.