Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (8): 1474-1481    DOI: 10.3785/j.issn.1008-973X.2018.08.006
Aeronautics and Astronautics Technology     
Distributed satellite cloud-fog network and strategy of latency and power consumption
REN Zhi-yuan1, HOU Xiang-wang1, GUO Kai2, ZHANG Hai-lin1, CHEN Chen1
1. State Key Laboratory of ISN, Xidian University, Xi'an 710071, China;
2. Beijing Telemetry Technology Research Institute, Beijing 100076, China
Download:   PDF(862KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To resolve the problem of high transmission latency in the distributed satellite cloud computing center architecture, a distributed satellite cloud fog network (DSCFN) architecture was proposed. The satellite fog network consisted of small satellites, and carried out distributed computing locally according to the task partition ratio calculated from the earth station cloud. As a result, the task processing latency was reduced. The computing power of satellites was weak and the reduction of the latency would lead to incensement of power consumption, thus, the working life of satellites was shortened. A balanced strategy of latency and power consumption was proposed to achieve the tradeoff between power consumption and latency by leveraging a modified particle optimization (MPSO) algorithm. Simulation indicates that the MPSO algorithm for distributed computing reduces the task processing latency of satellite fog network efficiently and meets the demand of latency-sensitive applications under the power consumption constraints. Compared with the ground cloud computing center, the latency performance of DSCFN was increased by 90.7% when using 10 small satellites and processing 1 Gb data.



Received: 08 November 2017      Published: 23 August 2018
CLC:  TP393  
Cite this article:

REN Zhi-yuan, HOU Xiang-wang, GUO Kai, ZHANG Hai-lin, CHEN Chen. Distributed satellite cloud-fog network and strategy of latency and power consumption. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1474-1481.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.08.006     OR     http://www.zjujournals.com/eng/Y2018/V52/I8/1474


分布式卫星云雾网络及时延与能耗策略

为了解决分布式卫星的地面云计算中心架构存在的高传输时延问题,提出分布式卫星云雾网络(DSCFN)架构,由小卫星编队飞行组成卫星雾网络,根据地面站云计算得出的任务划分比例直接进行本地分布式计算,降低业务处理时延.由于卫星的计算能力较弱,时延降低将导致能耗增加,卫星工作寿命减短,为此提出均衡时延和能耗的策略,利用改进的粒子群优化(MPSO)算法,解决能耗约束下的时延优化问题,达到时延和能耗折中的目标.仿真结果表明,基于MPSO算法得出的任务比例进行分布式计算,可以在能耗约束条件下,有效地降低卫星雾网络的任务处理时延,满足时延敏感型业务的需求;由10颗小卫星组成的DSCFN处理1 Gb数据的时延相比地面云中心降低了90.7%.

[1] 林来兴. 分布式小卫星系统的技术发展与应用前景[J]. 航天器工程, 2010, 19(1):60-66 LIN Lai-xing. Technological development and appli cation prospects of distributed small satellite system [J]. Spacecraft Engineering, 2010, 19(1):60-66
[2] 吴曼青, 吴巍, 周彬, 等. 天地一体化信息网络总体架构设想[J]. 卫星与网络, 2016, 3(4):30-36 WU Man-qing, WU Wei, ZHOU Bin, et al, The overall framework of integrated information network[J]. Satellite and Network, 2016, 3(4):30-36
[3] 郝玉龙, 孙阳, 李冰. 基于云计算的卫星地面应用系统设计[J]. 计算机应用与软件, 2012, 29(4):216-219 HAO Yu-long, SUN Yang, LI Bing. Cloud computing based satellite ground application system design[J]. Computer Applications and Software, 2012, 29(4):216-219
[4] BONOMI F, MILITO R, ZHU J, et al. Fog computing and its role in the internet of things[C]//First Edition of the MCC Workshop on Mobile Cloud Computing. New York:ACM, 2012:13-16
[5] NADEEM M A, SAEED M A. Fog computing:an emerging paradigm[C]//20166th International Conference on Innovative Computing Technology. Dublin:IEEE, 2016:83-86
[6] GIA T N, JIANG M, RAHMANI A M, et al. Fog computing in healthcare internet of things:a case study on ECG feature extraction[C]//IEEE International Conference on Computer and Information Technology. Liverpool:IEEE, 2015:357-363
[7] SARKAR S, MISRA S. Theoretical modelling of fog computing:a green computing paradigm to support IoT applications[J]. IET Networks, 2016, 5(2):23-29.
[8] TRUONG N B, LEE G M, GHAMRI-DOUDANE Y. Software defined networking-based vehicular adhoc network with fog computing[C]//IFIP/IEEE International Symposium on Integrated Network Management (IM). Ottawa:IEEE, 2015:1202-1207
[9] DENG R, LU R, LAI C, et al. Optimal workload allocation in fog-cloud computing towards balanced delay and power consumption[J]. IEEE Internet of Things Journal, 2016, 6(3):1171-1181.
[10] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks. Perth:IEEE, 1995:1942-1948
[11] 刘万军, 张孟华, 郭文越. 基于MPSO算法的云计算资源调度策略[J]. 计算机工程, 2011, 37(11):43-48 LIU Wan-jun, ZHANG Meng-hua, GUO Wen-yue. Cloud computing resource schedule strategy based on MPSO algorithm[J]. Computer Engineering, 2011, 37(11):43-48
[12] 李相勇, 田澎, 孔民. 解约束优化问题的新粒子群算法[J]. 系统管理学报, 2007, 16(2):120-129 LI Xiang-yong, TIAN Peng, KONG Min. A new particle swarm optimization for solving constrained optimization problems[J]. Journal of Systems and Management, 2007, 16(2):120-129
[13] 赵建华, 张陵, 孙清. 利用粒子群算法的传感器优化布置及结构损伤识别研究[J]. 西安交通大学学报, 2015, 49(1):79-85 ZHAO Jian-hua, ZHANG Ling, SUN Qing. Optimal placement of sensors for structural damage identifi cation using improved particle swarm optimization[J]. Journal of Xi'an Jiaotong University, 2015, 49(1):79-85
[14] RADOJEVIC B, ZAGAR M. Analysis of issues with load balancing algorithms in hosted (cloud) environments[C]//Proceedings of the 34th International Convention. Opatija:IEEE, 2011:416-420
[15] GHUMMAN N S, KAUR R. Dynamic combination of improved max-min and ant colony algorithm for load balancing in cloud system[C]//International Conference on Computing, Communication and Networking Technologies. Denton:IEEE, 2015:1-5
[16] TU K, LIANG Z. Parallel computation models of particle swarm optimization implemented by multiple threads[J]. Expert Systems with Applications, 2011, 38(5):5858-5866.
[17] MUSSI L, DAOLIO F, CAGNONI S. Evaluation of parallel particle swarm optimization algorithms within the CUDA architecture[J]. Information Sciences, 2011, 181(20):4642-4657.
[18] WAINTRAUB M, SCHIRRU R, PEREIRA C. Multi processor modeling of parallel particle swarm optimiza tion applied to nuclear engineering problems[J]. Progress in Nuclear Energy, 2009, 51(6/7):680-688.

[1] LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 99-106.
[2] LAI Xiao-han, WEN Hao-xiang, CHEN Long-dao. Energy efficient routing for wireless sensor networks in intertidal environment[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2414-2422.
[3] LIU Zhen, WU Ze-hui, CAO Yan, WEI Qiang. Software vulnerable code reuse detection method based on vulnerability fingerprint[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2180-2190.
[4] QI Xiao-gang, WANG Zhen-yu, LIU Li-fang, LIU Xing-cheng, MA Jiu-long. Reliable and efficient routing of wireless sensors and actuator networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1964-1972.
[5] HU Gang, XU Xiang Xiang, GUO Xiu-cheng. Importance calculation of complex network nodes based on interpretive structural modeling method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1989-1997.
[6] JIA Wen-chao, HU Rong-gui, SHI Fan, XU Cheng-xi. Injection vulnerability threat detection method with multi-feature correlation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 524-530.
[7] LI Bing, JIN Tao, CHEN Shuai. Method to improve reliability of SRAM PUFs key generation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 133-141.
[8] YU Yang, XIA Chun-he, HU Xiao-yun. Defense scheme generation method using mixed path attack graph[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1745-1759.
[9] LUO You-qiang, LIU Sheng-li, YAN Meng, WU Dong-ying. DNS tunnel Trojan detection method based on communication behavior analysis[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1780-1787.
[10] YIN Ge-Ting, ZHOU Bei, ZHANG Shuai, XU Bin, CHEN Yi-Xi, JIANG Dan. QoS-based bottom-up service replacement for Web service composition[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 700-709.
[11] WANG Rui-Qin, KONG Fan-Qing, BO Dun. Unsupervised word sense disambiguation based on WordNet[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 732-737.
[12] ZHOU Jiang, YING Jing, TUN Meng-Hui. Multifactor prediction routing protocol based on
characteristic categorization of opportunistic networks
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(3): 413-419.
[13] OU Yang-Yang, CHEN Yu-Feng, CHEN Xi-Yuan, et al. Ontology modeling of domain knowledge in semantic learning Web[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(09): 1591-1596.
[14] KONG Xiang-Jie, CHEN Guo-Jiang, LIANG Tong-Hai. Intelligent coordinated control of traffic flow on road network  with bus-priority[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1026-1031.
[15] WANG Jian, SUN Jian-Ling, WANG Xin-Yu, et al. Partial preemptive real-time scheduling algorithm in software fault-tolerant model[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1047-1052.