Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1681-1688    DOI: 10.3785/j.issn.1008-973X.2019.09.006
Mechanical Engineering     
Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine
Yong-qiang OUYANG(),Xin-yan ZHANG*()
School of Mechanical and Power Engineering, Tongji University, Shanghai 201804, China
Download: HTML     PDF(1101KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-objective optimization model studying storage area in mini-load AS/RS (automated storage and retrieval system) was raised. Take mini-load AS/RS as the research object, calculation models of energy consumption, average throughput time and cost of mini-load AS/RS as objective functions, and number of channels, number of storage compartment and operating parameters of the S/R (storage and retrieval) machine as the decision variables. Two methods were applied to solve the multi-objective mixed integer nonlinear programming model problem. One method used the classical genetic algorithm to get the solution set under different weights. Another method used non-dominated sorting genetic algorithm to obtain the pareto solution set. The solution set was the collection of optimized parameters, which determined the dimensions of storage system and helped to choose shelves and S/R machines. According to the optimal results of the model, storage area in AS/RS can be designed, which can provide reference for the construction of energy-saving AS/RS.



Key wordsautomated storage and retrieval system (AS/RS)      design of storage area      multi-objective problem      energy consumption      parameter optimization      acceleration and deceleration     
Received: 19 July 2018      Published: 12 September 2019
CLC:  TH 165.1  
Corresponding Authors: Xin-yan ZHANG     E-mail: tjjxoyyq@163.com;alicezxy@tongji.edu.cn
Cite this article:

Yong-qiang OUYANG,Xin-yan ZHANG. Design of energy-saving automated storage and retrieval system considering acceleration and deceleration of storage and retrieval machine. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1681-1688.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.006     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1681


考虑堆垛机加减速的节能自动立库设计

以料箱式自动立库为研究对象,考虑堆垛机实际作业中存在的加减速过程,以能耗、平均吞吐时间和成本的计算模型为目标函数,以货架数量、货格数量和堆垛机的运行参数为决策变量,建立自动立库存储区多目标优化模型. 采用2种方法求解该多目标的混合整数非线性规划模型问题:使用经典遗传算法进行求解,得到不同权重下的解集;使用非支配排序遗传算法求取pareto解,得到非劣解的解集. 这些解集是优化后决策变量的集合,根据这些参数组合可以确定存储区的大小,并辅助货架与堆垛机的选购. 依据该模型的优化结果,可以设计出规划更合理的自动立库存储区,可为节能自动立库的建造提供有效参考.


关键词: 自动立库(AS/RS),  存储区设计,  多目标问题,  能耗,  参数优化,  加减速 
Fig.1 Top view of automated storage and retrieval system
Fig.2 Diagram for dual-command cycle of storage and retrieval machine
参数 取值 单位 参数 取值 单位
? 0.9 ? TIt 15 year
tyear 4 800 h C1 120 000
m 1 000 kg C2 20
g 9.8 m/s2 C3 400
kr 0.01 ? C4 1.2
kir 1.15 ? W 2.2 m
lg 0.5 m M 20 000 ?
hg 0.5 m N 8 000 ?
T 10 s ? ? ?
Tab.1 Value of constants in multi-objective optimization model
变量 x1 x2 x3 x4/
(m·s?1)
x5/
(m·s?1)
x6/
(m·s?2)
x7/
(m·s?2)
对应参数 naisle n1 nh $v_{\rm{l}}^{{\rm{max}}}$ al $v_{\rm{y}}^{{\rm{max}}}$ ah
取值下限 1 10 4 1 1 1 1
取值上限 30 160 40 6.5 6.5 3.5 3.5
Tab.2 Value range of decision variables in multi-objective optimization model
优化结果比较 E Tn C
$E$最优化 202 960 3.464 5 928 484
(?58.38%) (74.02%) (?128.88%)
${T_n}$最优化 1 931 153 0.338 48 345 948
(83.35%) (?166.27%) (71.93%)
$C$最优化 202 960 3.464 5 928 484
(22.45%) (?0.11%) (?11.36%)
多目标优化 321 450 0.900 13 569 000
Tab.3 Comparison of optimized results between single-objective optimization and multi-objective optimization
优化对象 决策变量 目标函数 最优化程度
x1 x2 x3 x4 x5 x6 x7 E Tn C y
GA求解结果 30 21 16 1.42 1.00 1.15 1.26 321 450 0.9 13 569 000 1.641 0
lingo求解结果 30 20 17 1.33 1.14 1.33 1.14 324 109 0.9 13 441 980 1.639 9
Tab.4 Comparison of approximate results obtained by GA and lingo
Fig.3 Pareto solution by using non-dominated sorting genetic algorithm
Fig.4 Relation of cost and energy consumption in pareto front
优化结果比较 E Tn C
E最优化 202 960 3.464 5 928 484
(?138.40%) (80.66%) (?159.49%)
Tn最优化 1 931 153 0.338 48 345 948
(74.94%) (?98.22%) (68.18%)
C最优化 202 960 3.464 5 928 484
(?138.40%) (80.66%) (2.52%)
双目标优化 494 400 0.650 15 782 416
(2.13%) (?3.08%) (2.52%)
多目标优化 483 862 0.670 15 383 918
Tab.5 Comparison of results between multi-objective optimization and other optimization methods
[1]   徐正林, 刘昌祺. 《自动化立体仓库实用设计手册》[M]. 北京: 中国物资出版社, 2009: 70.
[2]   BOZER A Y, WHITE A J Travel-time models for automated storage and retrieval systems[J]. Institute Industrial Engineers Transactions, 1984, 16 (4): 329- 338
[3]   HWANG H, LEE S B Travel time models considering the operating characteristics of the storage and retrieval machine[J]. International Journal of Production Research, 1990, 28 (10): 1779- 1789
doi: 10.1080/00207549008942833
[4]   GHOMRI L, SARI Z, GUEZZEN A, et al. Continuous models for single and dual cycle times [C] // Proceedings of the 13th IFAC Symposium on Information Control Problems in Manufacturing. Moscow: IFAC, 2009, 42(4): 1061-1066.
[5]   BORTOLINI M, ACCORSI R, GAMBERI M, et al Optimal design of AS/RS storage systems with 3-class-based assignment strategy under single and dual command operations[J]. International Journal of Advance Manufacturing Technology, 2015, 79: 1747- 1759
doi: 10.1007/s00170-015-6872-1
[6]   杨朋, 缪立新 多载具自动化存取系统性能评价研究[J]. 工业工程, 2012, 15 (4): 21- 27
YANG Peng, MIAO Li-xin Performance evaluation for a multi-shuttle automated storage and retrieval system[J]. Industrial Engineering Journal, 2012, 15 (4): 21- 27
doi: 10.3969/j.issn.1007-5429.2012.04.004
[7]   周军, 赵长友, 刘战强, 等 烟丝原料立体仓库堆垛机出入库作业优化研究[J]. 计算机集成制造系统, 2009, 15 (4): 772- 776
ZHOU Jun, ZHAO Chang-you, LIU Zhan-qiang, et al Operation optimization of storage and retrieval for stackers in AS/RS of raw tabacco material[J]. Computer Integrated Manufacturing Systems, 2009, 15 (4): 772- 776
[8]   CHANG D T, WEN U P, LIN J T The impact of acceleration on travel-time models for automated storage-retrieval systems[J]. Institute Industrial Engineers Transactions, 1995, 27 (1): 108- 111
[9]   SHI H Y, LU X, LI D W. Travel time analysis of the single and dual command of AS/RS [C] //Chinese Control and Decision Conference. Chongqing: CCDC, 2017: 3407-3413.
[10]   LIU D B, MOU S D, LU M X, et al Travel time model of a new compact storage system[J]. International Journal of Control and Automation, 2014, 7 (7): 447- 460
doi: 10.14257/ijca
[11]   YANG P, YANG K D, QI M Y, et al Designing the optimal multi-deep AS/RS storage rack under full turnover-based storage policy based on non-approximate speed model of SR machine[J]. Transportation Research Part E, 2017, 104: 113- 130
doi: 10.1016/j.tre.2017.05.010
[12]   WANG F, GUO D F, TANG S J, et al Travel time model of the storage retrieval machine for multi-deep AS/RS based on Flexsim[J]. The Open Cybernetics and Systemics Journal, 2015, 9: 1833- 1839
doi: 10.2174/1874110X01509011833
[13]   何礼顺, 赵林度, 马新露 基于非线性规划的立体仓库存储区优化设计[J]. 东南大学学报: 自然科学版, 2007, 37 (2): 309- 315
HE Li-shun, ZHAO Lin-du, MA Xin-lu Optimization design of automated warehouse storage area based on nonlinear programming[J]. Journal of Southeast University: Natural Science Edition, 2007, 37 (2): 309- 315
[14]   ACCORSI R, BORTOLINI M, GAMBERI M, et al Multi-objective warehouse building design to optimize the cycle time, total cost, and carbon footprint[J]. International Journal of Advance Manufacturing Technology, 2017, 92: 839- 854
doi: 10.1007/s00170-017-0157-9
[15]   ROUWENHORST B, REUTER B, STOCKRAHM V, et al Warehouse design and control: framework and literature review[J]. European Journal of Operation Research, 2000, 122: 515- 533
doi: 10.1016/S0377-2217(99)00020-X
[16]   GU J X, MARC G, LEON F, etc Research on warehouse design and performance evaluation: a comprehensive review[J]. European Journal of Operational Research, 2010, 203: 539- 549
doi: 10.1016/j.ejor.2009.07.031
[17]   MANZINI R, BOZER Y, HERAGU S Decision models for the design, optimization and management of warehousing and material handling systems[J]. International Journal of Production Economics, 2015, 170: 711- 716
doi: 10.1016/j.ijpe.2015.08.007
[18]   BAKER P, CANESSA M Warehouse design: A structured approach[J]. European Journal of Operational Research, 2009, 193: 425- 436
doi: 10.1016/j.ejor.2007.11.045
[19]   KOULOUGHLI S, SARI Z Multi-aisle AS/RS dimensions optimization for cycle time minimization[J]. International Journal of Advance Manufacturing Technology, 2015, 79: 675- 692
doi: 10.1007/s00170-014-6709-3
[20]   ASHAYERI J, GELDERS L F A microcomputer-based optimization model for the design of automated warehouse[J]. International Journal of Production, 1985, 23 (4): 825- 839
doi: 10.1080/00207548508904750
[21]   BAFNA K M, REED R An analytical approach to design of high-rise stacker crane warehouse systems[J]. Journal of Industrial Engineering, 1972, 4 (10): 8- 14
[22]   PERRY R F, HOOVER S V, FREEMAN D R. Design of automated storage retrieval systems using simulation modelling [C] // Proceedings of the 5th International Conference on Automation in Warehousing. Georgia: ICAW, 1983: 57-63.
[23]   ALTINATAS O, DAIMLER A G, AVSAR C, et al. Change to green in intralogistics [C] // Proceedings 2010 European Simulation and Modeling Conference. Oostende: ESM, 2010: 373-377.
[24]   LERHER T, EDL M, ROSI B Energy efficiency model for the mini-load automated storage and retrieval systems[J]. International Journal of Advance Manufacturing Technology, 2014, 70: 97- 115
doi: 10.1007/s00170-013-5253-x
[1] Zhong CHEN,Xiao XU,Hai-wei WANG,Hong-hao LUO,Xuan CHEN. Optimization strategy for unloading power tasks in residential areas based on alternate edge nodes[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 917-926.
[2] Yong YU,Jing-yuan XUE,Sheng DAI,Qiang-wei BAO,Gang ZHAO. Quality prediction and process parameter optimization method for machining parts[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 441-447.
[3] Wei-da LI,Juan LI,Xiang LI,Hong-miao ZHANG,Hong GU,Yi-peng SHI,Hao-jie ZHANG,Li-ning SUN. Dynamic analysis and parameter optimization of under-actuated heterogeneous lower limb rehabilitation robot[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 222-228.
[4] Xin-yue LI,Shu-qin CHEN,Hong-liang LI,Yun-xiao LOU,Jia-he LI. Analysis of air-conditioning usage and energy consumption in campus teaching buildings with data mining[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1677-1689.
[5] Jin LIANG,Kun LUO,Qiang WANG,Xu-chao YANG,Jian-ren FAN,Jun-xi ZHANG. Effect of high-albedo roofs on urban heat island and air-conditioning energy consumption[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1993-2000.
[6] Liang LU,Fei-yan XIA,Yao-bao YIN,Jia-yang YUAN,Sheng-rong GUO. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1265-1273.
[7] Ming SHEN,Qing GAO,Yan WANG,Tian-shi ZHANG. Design and analysis of battery thermal management system for electric vehicle[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1398-1406.
[8] Shuo CONG,Jia-ming CHEN,Jing-cheng CAI,Rui-song SUN,Jian-hua DONG,Fei GUO. Thermodynamic analysis and experimental study on humidification-dehumidification desalination system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 684-691.
[9] BIAN Yu, MA Yuan. Consumption dynamic daylighting simulation and lighting energy analysis considering visual comfort[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1638-1643.
[10] LIU Zhou-zhou, LI Shi-ning, LI Bin, WANG Hao, ZHANG Qian-yun, ZHENG Ran. New elastic collision optimization algorithm and its application in sensor cloud resource scheduling[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1431-1443.
[11] LAI Xiao-han, WEN Hao-xiang, CHEN Long-dao. Energy efficient routing for wireless sensor networks in intertidal environment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2414-2422.
[12] LU Yuan-yuan, WANG Hui, SONG Chun-yue. Integrated optimization method of scheduling and control in express/slow train[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 106-116.
[13] ZHONG Qi, ZHANG Bin, HONG Hao-cen, YANG Hua-yong. Three power sources excitation control strategy of high speed on/off valve based on current feedback[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 8-15.
[14] FU Xin, QIAN Xiao-qian, QIAN Kuang-liang, DONG Kai, RUAN Fang. Method of defining heating and cooling period for residential buildings in hot summer and cold winter zone[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 729-738.
[15] WANG Zi li, ZHANG Shu you, QIU Le miao. Energy consumption analysis of plastic injection equipment plastic design based on confidence intervals[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 328-335.