A high-accuracy real-time smoke segmentation algorithm was proposed, aiming at the lack of a real-time smoke segmentation algorithm applied to the actual monitoring systems in the field of smoke segmentation. A lightweight multi-resolution convolution module to extract feature maps in parallel was used in the algorithm, which met the needs of real-time segmentation while obtaining rich semantic information. A smoke foreground enhancement module was proposed to enable smoke pixels to be merged with their corresponding foreground enhancement representations, while avoiding the interference of background information, thereby improving the accuracy of segmentation. A residual attention module was proposed to enhance important feature information from the two dimensions of channel and space, and suppress invalid information. The algorithm had a mean intersection over union of 91.27% on the self-built data set, the prediction time of each picture was 39.06 ms, and the network weight was 74.66 MB. Comparison results on the public data set show that the comprehensive detection performance of this algorithm is better than that of other smoke detection algorithms. The algorithm has high segmentation accuracy, fast detection speed and the model is lightweight, which can be applied to actual video surveillance systems.
Fig.5Qualitative comparison between representative semantic segmentation network and proposed algorithm
算法
mIoU/%
T/ms
P/MB
FCN
88.91
60.61
434.11
PSPNet
89.86
56.82
385.13
DeepLabV3
90.92
86.21
534.14
DeepLabV3+
91.95
63.69
344.12
本研究
91.27
39.06
74.66
Tab.2Comparison of segmentation results between representative semantic segmentation network and proposed algorithm
视频名称
视频描述
视频帧数/帧
sBehindtheFence
距离远、场景复杂
630
sBtFence
距离远、场景复杂
1400
sMoky
烟雾稀薄、快速运动
900
sWasteBasket
室内、有干扰(白墙)
900
sWindow
室外、运动缓慢
244
Tab.3Description of public data set
Fig.6Part of test results of public data set
视频名称
本研究算法
文献[20]
文献[19]
文献[18]
RTPR
RTNR
RTPR
RTNR
RTPR
RTNR
RTPR
RTNR
sBehindtheFence
98.64
100.00
98.26
94.60
97.20
96.27
94.72
100.00
sBtFence
98.81
100.00
98.20
100.00
98.17
100.00
99.08
100.00
sMoky
98.27
100.00
98.85
100.00
99.68
100.00
86.23
100.00
sWasteBasket
99.50
96.84
99.41
100.00
97.18
98.36
99.89
92.60
sWindow
98.46
97.87
98.40
100.00
98.10
100.00
94.30
100.00
Tab.4Comparison of detection results between existing smoke detection algorithms and proposed algorithm %
算法
烟雾前景增强模块
残差注意力模块
mIoU/%
T/ms
P/MB
文献[8]
√
√
91.84
47.63
93.24
Ours1
?
?
89.45
34.80
60.00
Ours2
√
?
90.83
38.52
73.24
本研究
√
√
91.27
39.06
74.66
Tab.5Ablation experiment results
Fig.7Qualitative comparison of ablation experiment results
[1]
TAO C, ZHANG J, WANG P. Smoke detection based on deep convolutional neural networks [C]// 2016 International Conference on Industrial Informatics-Computing Technology, Intelligent Technology, Industrial Information Integration. Wuhan: IEEE, 2016: 150-153.
[2]
SHRIVASTAVA M, MATLANI P. A smoke detection algorithm based on K-means segmentation [C]// 2016 International Conference on Audio, Language and Image Processing. Shanghai: IEEE, 2016: 301-305.
[3]
FILONENKO A, HERNÁNDEZ D C, JO K H Fast smoke detection for video surveillance using CUDA[J]. IEEE Transactions on Industrial Informatics, 2017, 14 (2): 725- 733
[4]
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
[5]
YUAN F, ZHANG L, XIA X, et al Deep smoke segmentation[J]. Neurocomputing, 2019, 357: 248- 260
doi: 10.1016/j.neucom.2019.05.011
[6]
XU G, ZHANG Y, ZHANG Q, et al Video smoke detection based on deep saliency network[J]. Fire Safety Journal, 2019, 105: 277- 285
doi: 10.1016/j.firesaf.2019.03.004
[7]
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[8]
SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5693-5703.
[9]
HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications [EB/OL]. [2020-11-16]. https://arxiv.org/pdf/1704.04861.pdf.
[10]
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network [C]// Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2881-2890.
[11]
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [EB/OL]. [2020-12-10]. https://arxiv.org/pdf/1706.05587.pdf.
[12]
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848
doi: 10.1109/TPAMI.2017.2699184
[13]
HE K, ZHANG X, REN S, et al Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1904- 1916
doi: 10.1109/TPAMI.2015.2389824
[14]
YUAN Y, CHEN X, WANG J, et. Object-contextual representations for semantic segmentation[C]// Computer Vision-ECCV 2020. [S.l.]: Springer, 2020: 173-190.
[15]
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 3-19.
[16]
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[17]
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision. Munich: Springer, 2018: 801-818.
[18]
BESBES O, BENAZZA-BENYAHIA A. A Novel video-based smoke detection method based on color invariants [C]// 2016 IEEE International Conference on Acoustics, Speech and Signal Processing. Shanghai: IEEE, 2016: 1911-1915.
[19]
赵敏, 张为, 王鑫, 等 时空背景模型下结合多种纹理特征的烟雾检测[J]. 西安交通大学学报, 2018, 52 (8): 67- 73 ZHAO Min, ZHANG Wei, Wang Xin, et al A smoke detection algorithm with multi-texture feature exploration under a spatio-temporal background model[J]. Journal of Xi’an Jiaotong University, 2018, 52 (8): 67- 73
[20]
汪梓艺, 苏育挺, 刘艳艳, 等 一种改进DeeplabV3网络的烟雾分割算法[J]. 西安电子科技大学学报, 2019, 46 (6): 52- 59 WANG Zi-yi, SU Yu-ting, LIU Yan-yan, et al Algorithm for segmentation of smoke using the improved DeeplabV3 network[J]. Journal of Xidian University, 2019, 46 (6): 52- 59