A two-cameras vision measurement system was designed using cross-hair structured light; an image acquisition device was constructed, which consisted of two high-precision industrial cameras, two cross lasers, and a ring light source. The image of the end pinhole at the transmission box processing site was obtained; the image region of interest (ROI) was extracted; bilateral filtering was used for noise reduction preprocessing, binarization and edge detection. The center lines of two cross structured light were extracted based on improved direction template method. According to the design principle of the measuring system, the diameter and position degree of two pin holes were measured, respectively. Results show that, for diameter of pin hole, the average deviation of the measurement results between the machine vision online measureement device and the electronic plug gauge is 0.001 mm; for hole set position degree, the maximum deviation of the measurement results between the machine vision online measuring device and the coordinate measuring device is 0.02 mm. The proposed machine vision online measuring device can meet the requirements of processing accuracy and online real-time measurement.
Ying LI,Fang CHENG,Zhi-lin ZHAO. Machining precision online measurement of large span pin hole using structured light. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 557-565.
Fig.10Contrast of centerline exteraction results using morphological refinement algorithm and improved direction template algorithm (anti-color image)
Fig.11Transmission box processing site online measurement
mm
测量方法
D1
D2
W
H
视觉测量系统
14.957
14.972
40.019
329.988
三坐标测量仪
14.958
14.970
40.008
330.008
Tab.2Comparison of measurement results of pin hole maching quality using machine vision online measurement system and three-coordinates measuring machine
Fig.12Structure light center line and pin hole edge extraction effect diagram (anti-color image)
mm
箱体编号
视觉测量
电子塞规
${\delta_1}$
3026181128001
14.963
14.964
0.001
3026181128002
14.960
14.961
0.001
3026181128003
14.967
14.965
0.002
3026181128004
14.970
14.970
0
3026181129001
14.963
14.963
0
3026181129002
14.961
14.960
0.001
3026181129003
14.970
14.965
0.005
3026181129004
14.967
14.966
0.001
Tab.3Comparison of pin hole diameter measurement results using machine vision online measurement system and electronic plug gauge
mm
箱体编号
H
W
3026181128001
40.019
329.988
3026181128002
39.982
330.000
3026181128003
40.011
329.980
3026181128004
40.008
329.979
3026181129001
40.011
329.971
3026181129002
39.986
330.021
3026181129003
39.993
329.988
3026181129004
39.989
330.017
Tab.4Measurement results for positional degree of machine vision online measurement system
mm
测量次数
D1
$\delta_2 $
测量次数
D1
$\delta_2 $
注:电子塞规对箱体编号为3026181129001的孔径的测量结果为14.963 mm.
1
14.963
0
5
14.963
0
2
14.963
0
6
14.964
0.001
3
14.963
0
7
14.965
0.002
4
14.964
0.001
8
14.964
0
Tab.5Repeatability measurement of pinhole of machine vision online measurement system
[1]
张明海 三坐标测量机在拖拉机制造业的应用[J]. 南方农机, 2017, 48 (24): 64- 68 ZHANG Ming-hai Application of coordinate measuring machine in tractor manufacturing industry[J]. South Agricultural Machinery, 2017, 48 (24): 64- 68
doi: 10.3969/j.issn.1672-3872.2017.24.050
[2]
冯乾新, 梁瑞丽 孔组位置度量规的设计[J]. 工具技术, 2015, 49 (1): 87- 90 FENG Qian-xin, LIANG Rui-li Design of hole set position gauge[J]. Tool Engineering, 2015, 49 (1): 87- 90
doi: 10.3969/j.issn.1000-7008.2015.01.024
[3]
张亚伟, 王冬, 陈度, 等 大型收获机械发动机孔组位置度误差在线检测方法[J]. 农业机械学报, 2017, 48 (Suppl. 1): 71- 78 ZHANG Ya-wei, WANG Dong, CHEN Du online method for large-scale harvester engine punch combination position accuracy measurement[J]. Journal of Agricultural Machinery, 2017, 48 (Suppl. 1): 71- 78
[4]
杨永奎. 基于机器视觉的液力变矩器焊缝三维检测技术研究_杨永奎[D]. 西安: 长安大学, 2017. YANG Yong-kui. Research on three-dimensional inspection technology of weld of hydraulic torque converter based on machine vision[D]. Xi'an: Chang'an University, 2017.
[5]
LI Y, LI Y F, WANG Q L, et al Measurement and defect detection of the weld bead based on online vision inspection[J]. IEEE Transactions on Instru- mentation and Measurement, 2010, 59 (7): 1841- 1849
doi: 10.1109/TIM.2009.2028222
[6]
陈炳权, 刘宏立, 孟凡斌 数字图像处理技术的现状及其发展方向[J]. 吉首大学学报: 自然科学版, 2009, 30 (1): 63- 70 CHEN Bing-quan, LIU Hong-li, MENG Fan-bin Digital image processing technology and its develop- ment direction[J]. Journal of Jishou University: Natural Science Edition, 2009, 30 (1): 63- 70
[7]
GADELMAWLA E S Computer vision algorithms for measurement and inspection of external screw threads[J]. Measurement, 2017, 100 (3): 36- 49
[8]
YANG S R, LIU M, YIN S B, et al. An improved method for location of concentric circles in vision measurement [J]. Measurement, 2017, 100(3): 243-251.
[9]
孙博文, 朱志明, 郭吉昌, 等 基于激光结构光的视觉传感器的图像处理技术研究应用及展望[J]. 焊接, 2018, 543 (9): 10- 14 SUN Bo-wen, ZHU Zhi-ming, GUO Ji-chang Application and prospect of image processing techno-logy for vision sensor based on laser structured light[J]. Welding and Joining, 2018, 543 (9): 10- 14
[10]
王滔. 基于结构光的焊缝跟踪伺服系统设计与研究[D]. 杭州: 浙江大学, 2017. WANG Tao. Design and research of weld seam tracking servo system based on structure light [D]. Hangzhou: Zhejiang University, 2017.
[11]
汪小涵, 赵杰 基于线结构光视觉技术的工件尺寸三维测量系统研究[J]. 中国管理信息化, 2017, 20 (23): 178- 182 WANG Xiao-han, ZHAO Jie Reseach on 3D measuring system of workpiece dimension based on linear structured light vision technology[J]. China Management Informationization, 2017, 20 (23): 178- 182
[12]
SUN Q C, CHEN J, LI C J A robust method to extract a laser stripe centre based on grey level moment[J]. Optics and Lasers in Engineering, 2015, 67: 122- 127
doi: 10.1016/j.optlaseng.2014.11.007
[13]
MAO Q Z, CUI H, HU Q W, et al A rigorous fastener inspection approach for high-speed railway from structured light sensors[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143: 249- 267
doi: 10.1016/j.isprsjprs.2017.11.007
[14]
田庆国, 葛宝臻, 李云鹏, 等 利用轮廓线多边形表示实时提取光带中心线[J]. 光学精密工程, 2012, 20 (6): 1357- 1364 TIAN Qing-guo, GE Bao-zhen, LI Yun-peng Real-time extraction of light stripe central line based on contour polygonal representation[J]. Optics and Precision Engineering, 2012, 20 (6): 1357- 1364
[15]
南方, 李大华, 高强, 等 改进Steger算法的自适应光条纹中心提取[J]. 激光杂志, 2018, 39 (1): 85- 88 NAN Fang, LI Da-hua, GAO Qiang Implementation of adaptive light stripe center extraction of improved Steger algorithm[J]. Laster Journal, 2018, 39 (1): 85- 88
[16]
王泽浩, 张中炜 自适应方向模板线结构光条纹中心提取方法[J]. 激光杂志, 2017, 38 (1): 60- 64 WANG Ze-hao, ZHANG Zhong-wei Adaptive direction template method to extract the center of structured light[J]. Laser Journal, 2017, 38 (1): 60- 64
[17]
胡改玲, 周翔, 杨涛, 等 光刀自适应灰度加权亚像素中心精确提取[J]. 西安交通大学学报, 2018, 52 (5): 21- 28 HU Gai-ling, ZHOU Xiang, YANG Tao Sub-pixel centerline extraction based on light stripe adaptive grayscale weighting[J]. Journal of Xi'an Jiaotong University, 2018, 52 (5): 21- 28
[18]
CUI Z Y, ZHANG H A study on contour extraction method in computer vision measurement technology[J]. Computer Modelline and New Technologies, 2013, 17 (5B): 88- 91
[19]
MOONS T, VAN GOOL L, PROESMANS M, et al Affine reconstruction from perspective image pairs with a relative object-camera translation in between[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18 (1): 77- 83
doi: 10.1109/34.476015
[20]
徐蕾, 彭月平, 贺科宁 基于改进双边滤波与随机共振的图像去噪算法研究[J]. 激光杂志, 2018, 39 (8): 142- 148 XU Lei, PENG Yue-ping, HE Ke-ning Resarch on image denoising algorithm based on improved bilateral filtering and stochastic resonance[J]. Laser Journal, 2018, 39 (8): 142- 148
[21]
TIAN Q G, ZHANG X Y, MA Q, et al Utilizing polygon segmentation technique to extract and optimize light stripe centerline in line-structured laser 3D scanner[J]. Pattern Recognition, 2016, 55: 100- 113
doi: 10.1016/j.patcog.2016.02.008
[22]
WANG Y Z, GENG B L, LONG Chao Contour extraction of a laser stripe located on a microscope image from a stereo light microscope[J]. Microscopy Research and Technique, 2019, 82 (3): 260- 271
doi: 10.1002/jemt.v82.3
[23]
段瑞玲, 李庆祥, 李玉和 图像边缘检测方法研究综述[J]. 光学技术, 2005, 31 (3): 95- 99 DUAN Rui-ling, LI Qing-xiang, LI Yu-he Summary of image edge detection[J]. Optical Techinque, 2005, 31 (3): 95- 99
[24]
赵军 焊缝结构光图像处理与特征提取方法[J]. 西安交通大学学报, 2013, 47 (1): 114- 119 ZHAO Jun Image processing and feature extraction for structured light images of welded seam[J]. Journal of Xi'an Jiaotong University, 2013, 47 (1): 114- 119
doi: 10.3969/j.issn.1008-245X.2013.01.017
[25]
何雯. 精确提取光饱和与物体边缘线结构光条纹中心的方法研究[D]. 陕西: 西北农林科技大学, 2018. HE Wen. Research on the extraction Accuracy of laser stripe center in light saturation and at the edge of the object [D]. Shanxi: Northwest A&F University, 2018.
[26]
BAO P, ZHANG L WU X L Canny edge detection enhancement by scale multiplication[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (9): 1481- 1485
[27]
刘枝梅, 邓文怡, 娄小平 结构光测量系统中光条中心的提取算法[J]. 北京机械工业学院学报, 2009, 24 (1): 42- 45 LIU Zhi-mei, DENG Wen-yi, LOU Xiao-ping Extraction algorithm of light stripes center in the measurement of structured light[J]. Journal of Beijing Institute of Machinery, 2009, 24 (1): 42- 45
doi: 10.3969/j.issn.1674-6864.2009.01.011
WANG Han, XIA Xin-xing, YU Chao, ZHONG Qing, GAO Qian-jue, LI Hai-feng, LIU Xu. integral three-dimensional display[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1-6.