Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Two dimensional Arimoto gray entropy image thresholding based on bee colony optimization or decomposition
WU Yi quan1,2,3,4, YIN Jun1, ZHU Li1, YUAN Yong ming2
1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; 3. Key Laboratory of Fishery Equipment and Engineering, Ministry of Agriculture, Shanghai 200092, China; 4. Jiangsu Provincial Key Laboratory of Pulp and Paper Science and Technology, Nanjing 210037, China
Download:   PDF(4928KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The existing thresholding methods based on Arimoto entropy do not consider the uniformity of gray scale within object cluster and background cluster. A 2D Arimoto gray entropy thresholding method based on bee colony optimization or decomposition was proposed. Arimoto gray entropy was defined and a 2D Arimoto gray entropy thresholding method was derived. The method based on bee colony optimization and another method based on decomposition were adopted to find the optimal thresholds. Fast recursive formulae for the intermediate variables were given using the method based on bee colony optimization. A modified artificial bee colony(MABC) optimization algorithm was adopted to find the optimal threshold of the 2D Arimoto gray entropy method. The redundant computations of fitness function in an iterative procedure could be avoided. Using the method based on decomposition, the computations of 2D Arimoto gray entropy thresholding method were converted into two onedimensional spaces. The computational complexity was further reduced. The experimental results show that, compared with three similar methods proposed recently, the proposed methods have superior image segmentation performance and a better antinoise performance. In the segmented images, objects are completely kept, and the edges and textures are clear. Moreover, the proposed methods have high running speed and can meet the realtime processing requirement of segmentation in the actual system.



Published: 15 October 2015
CLC:  TP 391.41  
Cite this article:

WU Yi,YIN Jun, ZHU Li, YUAN Yong ming. Two dimensional Arimoto gray entropy image thresholding based on bee colony optimization or decomposition. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1625-1633.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008973X.2015.09.003     OR     http://www.zjujournals.com/eng/Y2015/V49/I9/1625


基于蜂群优化或分解的二维Arimoto灰度熵阈值分割

现有的Arimoto熵阈值法未考虑图像目标和背景的类内灰度均匀性,为此提出基于蜂群优化和基于分解的二维Arimoto灰度熵阈值分割方法.定义Arimoto灰度熵,导出二维Arimoto灰度熵阈值法,分别利用基于蜂群优化和基于分解的方法求解最佳阈值.基于蜂群优化方法给出中间变量的快速递推公式,利用改进的人工蜂群(MABC)优化算法搜索最佳阈值,减少迭代时适应度函数中的冗余运算.基于分解方法将求解二维Arimoto灰度熵阈值法的运算转化到2个一维空间,进一步降低计算复杂度.实验结果表明:与近年来提出的3种同类方法相比,所提出方法的分割性能更优,分割后图像中目标完整、边缘纹理清晰,具有良好的抗噪性.同时,所提出的方法运行速度快,有望满足实际系统对分割的实时处理要求.

[1] 吴一全, 朱兆达. 图像处理中阈值选取方法30年(1962-1992)的进展(二)[J]. 数据采集与处理, 1993, 8(4): 268-282.
WU Yi quan, ZHU Zhao da. 30 years (19621992) of the developments in threshold selection methods in image processing (Ⅱ) [J]. Journal of Data Acquisition and Processing, 1993, 8(4): 268-282.
[2] MAHMOUDI L, EL ZAART A. A survey of entropy image thresholding techniques [C] ∥ 2012 2nd International Conference on Advances in Computational Tools for Engineering Applications. Beirut:IEEE, 2012:204-209.
[3] YIN J, WU Y Q, ZHU L. Multi thresholding based on symmetric Tsallis cross entropy and particle swarm optimization [J]. Advanced Materials Research, 2013, 760: 1457-1461.
[4] KAPUR J N, SAHOO P K, WONG A K C. A new method for gray level picture thresholding using the entropy of histogram [J]. Computer Vision, Graphics and Image Processing, 1985, 29(1): 273-285.
[5] BRINK A D. Thresholding of digital images using two dimensional entropies [J]. Pattern Recognition, 1992, 25(8): 803-808.
[6] 龚劬, 王菲菲, 倪麟. 基于分解的二维 Renyi 灰度熵的图像阈值分割[J]. 计算机工程与应用, 2013, 49(1): 181-185.
GONG Qu, WANG Fei fei, NI Lin. Decomposition based two dimensional thresholding for image using Renyi gray entropy [J]. Computer Engineering and Applications, 2013, 49(1): 181-185.
[7] SAHOO P K, ARORA G. Image thresholding using two dimensional Tsallis Havrda Charvát entropy [J]. Pattern Recognition Letters, 2006, 27(6): 520-528.
[8] WANG S, CHUNG F L. Note on the equivalence relationship between Renyientropy based and Tsallis entropy based image thresholding [J]. Pattern Recognition Letters, 2005, 26(14): 2309-2312.
[9] 卓问, 曹治国, 肖阳. 基于二维Arimoto 熵的阈值分割方法[J]. 模式识别与人工智能, 2009, 22(2): 208-213.
ZHUO Wen, CAO Zhiguo, XIAO Yang. Image thresholding based on twodimensional Arimoto entropy [J]. Pattern Recognition and Artificial Intelligence, 2009, 22(2): 208-213.
[10] 张弘, 范九伦. 二维 Arimoto 熵直线型阈值分割法[J]. 光子学报, 2013, 42(2): 234-240.
ZHANG Hong, FAN Jiu lun. Two dimensional Arimoto entropy linear type threshold segmentation method [J]. Acta Photonica Sinica, 2013, 42(2): 234-240.
[11] 唐英干, 邸秋艳, 赵立兴, 等. 基于二维最小 Tsallis 交叉熵的图像阈值分割方法[J]. 物理学报, 2009,58: 9-15.
TANG Ying gan, DI Qiuyan, ZHAO Lixing, et al. Image thresholding segmentation based on two dimensional minimum Tsallis cross entropy [J]. Acta Physica Sinica, 2009,58: 9-15.
[12] 吴一全, 吴诗婳, 占必超, 等. 基于改进的二维交叉熵及 Tent 映射 PSO 的阈值分割[J]. 系统工程与电子技术, 2012, 34(3): 603-609.
WU Yi quan, WU Shi hua, ZHAN Bi chao, et al. Thresholding based on improved two dimensional cross entropy and Tent map PSO [J]. Systems Engineering and Electronics, 2012, 34(3): 603-609.
[13] 梁建慧, 马苗. 人工蜂群算法在图像分割中的应用研究[J]. 计算机工程与应用, 2012, 48(8): 194-196.
LIANG Jian hui, MA Miao. Artificial bee colony algorithm based research on image segmentation [J]. Computer Engineering and Applications, 2012, 48(8): 194-196.
[14] KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm [J]. Applied Mathematics and Computation, 2009, 214(1): 108-132.
[15] GAO W, LIU S. A modified artificial bee colony algorithm [J]. Computers and Operations Research, 2012, 39(3): 687-697.
[16] ZHANG H. One dimensional Arimoto entropy threshold segmentation method based on parameters optimization [J].Communications in Computer and Information Science, 2011,4:573-581.
[17] 吴一全, 纪守新. 灰度熵和混沌粒子群的图像多阈值选取[J]. 智能系统学报, 2010, 5(6): 522-529.
WU Yiquan, Ji Shou xin. Multithreshold selection for an image based on gray entropy and chaotic particle swarm optimization [J]. CAAI Transactions on Intelligent Systems, 2010, 5(6): 522-529.
[18] 罗钧, 李研. 具有混沌搜索策略的蜂群优化算法[J]. 控制与决策, 2010, 25(12): 1913-1916.
LUO Jun , LI Yan. Artificial bee colony algorithm with chaoticsearch strategy [J]. Control and Decision, 2010, 25(12): 1913-1916.

[1] TANG You bao, BU Wei, WU Xiang qian. Natural scene text detection based on multi level MSER[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1134-1140.
[2] WANG Yuan-yuan, GUO Yan-en, SHI Guo-quan, WEI Jun-xia, XIA Shun-ren. Algorithm for seabed terrain boundary extraction based on acoustic images[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 376-383.
[3] HU Zhu-hua, ZHAO Yao-chi, CHENG Jie-ren, PENG Jin-lian. Moving object segmentation method based on improved DRLSE[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1488-1495.
[4] YANH Yu-ting, SHI Yu-hui, XIA Shun-ren. Discussion mechanism based brain storm optimization algorithm[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(10): 1705-1711.
[5] ZHU Xiao-en, HAO Xin, XIA Shun-ren. Feature selection algorithm based on Levy flight[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(4): 638-643.
[6] ZHOU Shui-qin, YING Yi-bin, SHANG De-sheng. Morphology based noninvasive detection for fragrant pears browning
with magnetic resonance imaging
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(12): 2141-2145.
[7] SON Chang-il , ZHEN Shuai, XIA Shun-ren. Attractor range based affine registration of multi-modal
brain magnetic resonance images
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(9): 1722-1728.
[8] XIE Di, TONG Ruo-feng, TANG Min, FENG Yang. Distinguishable method for video fire detection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 698-704.
[9] DAI Yuan-ming, WEI Wei, LIN Yi-ning. An improved Mean-shift tracking algorithm based on
color and texture feature
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(2): 212-217.
[10] Qi lei, JIN Wen-guang, GENG Wei-dong. Human motion capture using wireless inertial sensors[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(2): 280-285.
[11] LIU Chen-bin, PAN Ying, ZHANG Hai-shi, HUANG Feng-ping, XIA Shun-ren. Detecting MGMT expression status of glioma with magnetic
resonance image
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(1): 170-176.
[12] LI Xiang, YAN Xiao-lang, JIANG Qing-xiao. Algorithm of planarize text on curved surface[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(1): 130-135.
[13] QIAN Cheng, ZHANG San-yuan. Weighted incremental subspace learning algorithm
suitable for object tracking
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(12): 2240-2246.
[14] CAO Ying, HAO Xin, ZHU Xiao-en, XIA Shun-ren. Mammographic mass segmentation algorithm based on
automatic random walks
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(10): 1753-1760.
[15] LV Gu-lai,LI Jian-ping,LI Qiang,YU Li-xing,ZHU Song-ming,LOU Jian-zhong. Method for rootstock position recognition based on machine vision[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(10): 1766-1770.