Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency
Han KE1,2(),Sheng-ze LAN1,2,Mei-lan ZHANG3,Jie HU1,2,*(),Xing XU1,2,Yun-min CHEN1,2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China 3. Shanghai Laogang Waste Disposal Limited Company, Shanghai 201302, China
The motion equation of municipal solid waste (MSW) in trommel was derived and solved numerically. The MSW motion pattern was divided into three categories according to the maximum position angle: cascade action, cataract action and circular action. The discriminant contour maps of the motion pattern under different rotating speed, radius and kinetic friction coefficient were given. The Trommel experiments indicate that the maximum position angle of the MSW motion increases first, and then stays stable with the increase of the rotating speed. The MSW enters circular action after the rotating speed reaches 50 r/min. The screening efficiency of trommel increases at first and then decreases with the increase of rotating speed, continues to increase with the increase of drop, and decreases with the increase of water mass fraction. The contour map of the optimal rotational speed with the trommel was given based on the experiment results. In specific projects, optimal rotating speed can be selected according to the kinetic friction coefficient of MSW and the trommel radius, and the water mass fraction should be reduced to improve the screening efficiency.
Han KE,Sheng-ze LAN,Mei-lan ZHANG,Jie HU,Xing XU,Yun-min CHEN. Motion pattern of aged municipal solid waste in trommeland optimization of screening efficiency. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2323-2333.
Tab.1Motion characteristics of different motion patterns of materials in trommel
Fig.1Three motion patterns of materials in trommel
Fig.2Force analysis of material on trommel circumference
阶段
δ
au
aD
aT
vTs
运动控制方程
I
0°~δ0
μ (gcos δ+v2/R)
gsin δ
>0
0
x=F1(t)
II
δ0~δ1
aS
gsin δ
0
2πntR
x=xδ0+vδ0(t)
III
>δ1
μ (gcos δ+v2/R)
gsin δ
<0
2πntR
x=F1(t)
Tab.2Motion phase table when trommel rotational speed is not enough
Fig.3Numerical solutions of MSW motion in standard case
Fig.4Relationship between position angle and friction coefficient in standard case
Fig.5Numerical solution of MSW motion when trommel rotational speed is not enough in general case
Fig.6Contour map of maximum angle and motion pattern
Fig.7Product photo of trommel
Fig.8Particle size distribution of aged MSW
Fig.9Recording method of maximum angle in laboratory tests
Fig.10Screening material and products
Fig.11Relation between maximum angle and trommel rotational speed
Fig.12Relation between screening efficiency and trommel rotational speed
Fig.13Relation between screening efficiency and drop function
Fig.14Optimal rotational speed value of figure for trommel
Fig.15Relation between screening efficiency and water mass fraction
[1]
陈云敏, 刘晓成, 徐文杰, 等 填埋生活垃圾稳定化特征与可开采性分析: 以我国第一代卫生填埋场为例[J]. 中国科学:技术科学, 2019, 49 (2): 199- 211 CHEN Yun-min, LIU Xiao-cheng, XU Wen-jie, et al Analysis on stabilization characteristics and exploitability of landfilled municipal solid waste: case of a typical landfill in China[J]. Scientia Sinica: Technologica, 2019, 49 (2): 199- 211
doi: 10.1360/N092018-00140
HOGLAND W Remediation of an old landsfill site[J]. Environmental Science and Pollution Research, 2002, 9: 49- 54
doi: 10.1007/BF02987426
[4]
KROOK J, BAAS L Getting serious about mining the technosphere: a review of recent landfill mining and urban mining research[J]. Journal of Cleaner Production, 2013, 55 (14): 1- 9
[5]
JAIN P, TOWNSEND T G, JOHNSON P Case study of landfill reclamation at a Florida landfill site[J]. Waste Management, 2013, 33 (1): 109- 116
doi: 10.1016/j.wasman.2012.09.011
[6]
FORSTER G A. Assessment of landfill reclamation and the effects of age on the combustion of recovered municipal solid waste [M]. Lancaster: National Renewable Energy Laboratory, 1995: 1-125.
[7]
ASHKIKI A R, FELSKE C, MCCARTNEY D Impacts of seasonal variation and operating parameters on double-stage trommel performance[J]. Waste Management, 2019, 86: 36- 48
doi: 10.1016/j.wasman.2019.01.026
[8]
赵先. 陈垃圾开采回用工程的综合效益评价研究[D]. 武汉: 华中科技大学, 2008: 1-51. ZHAO Xian. A study on integrate-benefit evaluation of landfill mining project [D]. Wuhan: Huazhong University of Science and Technology, 2008: 1-51.
[9]
李兵, 赵由才, 施庆燕, 等 上海市生活垃圾分选模式研究[J]. 同济大学学报:自然科学版, 2007, (4): 507- 510 LI Bing, ZHAO You-cai, SHI Qing-yan, et al State-of-the-art separation mode for municipal solid wastes in Shanghai[J]. Journal of Tongji University: Natural Science, 2007, (4): 507- 510
doi: 10.3321/j.issn:0253-374X.2007.04.015
[10]
WHEELER P A, BARTON J R, NEW R An empirical approach to the design of trommel screens for fine screening of domestic refuse[J]. Resources, Conservation and Recycling, 1989, 2 (4): 261- 273
doi: 10.1016/0921-3449(89)90003-7
[11]
黄楚雨, 韩华, 康敏娟, 等 非正规垃圾堆放点垃圾质量及筛分产物比例精准勘测方法研究[J]. 环境卫生工程, 2020, 28 (5): 33- 37 HUANG Chu-yu, HAN Hua, KANG Min-juan, et al Accurate survey method study of waste quality and screening product proportion in informal waste dump sites[J]. Environmental Sanitation Engineering, 2020, 28 (5): 33- 37
[12]
ALTER H, GAVIS J, RENARD M L Design models of trommels for resource recovery processing[J]. Resources and Conservation, 1981, 6 (3/4): 223- 240
[13]
GLAUB J C, JONES D B, SAVAGE G M. Design and use of trommel screens for processing municipal solid waste [C]// Proceedings of ASME National Waste Processing Conference. New York: [s. n.], 1982: 447-457.
[14]
STESSEL R I A new trommel model[J]. Resources, Conservation and Recycling, 1991, 6 (1): 1- 22
doi: 10.1016/0921-3449(91)90002-6
[15]
MELLMANN J The transverse motion of solids in rotating cylinders: forms of motion and transition behavior[J]. Powder Technology, 2001, 118 (3): 251- 270
doi: 10.1016/S0032-5910(00)00402-2
[16]
唐红侠, 赵由才 滚筒筛筛分生活垃圾的理论研究[J]. 环境工程学报, 2007, (12): 124- 127 TANG Hong-xia, ZHAO You-cai Research on theories of the trommel screen separating municipal solid waste[J]. Chinese Journal of Environmental Engineering, 2007, (12): 124- 127
doi: 10.3969/j.issn.1673-9108.2007.12.026
[17]
李兵. 生活垃圾深度分选及设备优化组合技术研究[D]. 上海: 同济大学, 2006: 1-155. LI Bing. Integrated mechanical separation and parameter optimization for municipal solid wastes [D]. Shanghai: Tongji University, 2006: 1-155.
[18]
张大卫. 用于粗煤泥脱水脱泥滚筒筛的研制及其性能试验研究[D]. 太原: 太原理工大学, 2015: 1-89. ZHANG Da-wei. The development and study on the trommel screen used for dewatering and desliming of coal slime [D]. Taiyuan: Taiyuan University of Technology, 2015: 1-89.
[19]
肖嘉. 基于EEP法的线法二阶常微分方程组有限元自适应分析[D]. 北京: 清华大学, 2009: 1-152. XIAO Jia. Adaptive FEM analysis of second order ODEs of FEMOL based on EEP super-convergent method [D]. Beijing: Tsinghua University, 2009: 1-152.
[20]
夏敦行. 二阶变系数线性微分方程的解法[D]. 武汉: 武汉科技大学, 2009: 1-37. XIA Dun-xing. Solution of second order variable coefficients linear differential equation [D]. Wuhan: Wuhan University of Science and Technology, 2009: 1-37.
[21]
王冠, 霍丽丽, 赵立欣, 等 秸秆类生物质原料筛分除杂试验及滚筒筛改进[J]. 农业工程学报, 2016, 32 (13): 218- 222 WANG Guan, HUO Lili, ZHAO Lixin, et al Screening of biomass straw materials and improvement of feedstock equipment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (13): 218- 222
doi: 10.11975/j.issn.1002-6819.2016.13.031
[22]
TURES G L. A guide to implementing reclamation processes at department of defense municipal solid waste and construction debris landfills [D]. Montgomery: Air Force Institute of Technology, 2007: 1-81.
[23]
MÖNKÄRE T J, PALMROTH M R T, RINTALA J A Characterization of fine fraction mined from two Finnish landfills[J]. Waste Management, 2016, 47: 34- 39
doi: 10.1016/j.wasman.2015.02.034
张钰. 煤泥脱水筛分滚筒筛性能试验研究与离散元模拟[D]. 太原: 太原理工大学, 2016: 1-68. ZHANG Yu. Experimental study and discrete element simulation of coal slime dewatering sieving drum screen’s performance [D]. Taiyuan: Taiyuan University of Technology, 2016: 1-68.