|
|
Prediction of hand grasping intention based on sample entropy and time-frequency analysis |
Chong-bao XU( ),Hong-miao ZHANG*( ),Li-ning SUN,Juan LI,Yan FAN,Hao GUO |
Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China |
|
|
Abstract The movement related cortical potentials (MRCP) before the autonomous grasping movement of the hand were collected, and based on the fusion algorithm of nonlinear sample entropy (SampEn) feature and linear amplitude feature a prediction method of motion intention was proposed, in order to solve the problem of poor real-time of brain computer interface (BCI) system caused by the time lag between the control signal of upper limb exoskeleton and the response of external devices. The differences between different brain states were analyzed from the perspectives of time-frequency and neural complexity, and the prediction of hand grasping motor intention by feature fusion was realized. The off-line classification accuracy of intention based on the feature fusion was up to 88.46%, when the occurrence time of human hand voluntary motion was ?1400 ms the prediction of hand motion can be realized. The EEG signals of hand grasping intention in the power spectrum and complexity are significantly different from those in the static state of the hand during the quiet period which could be proposed as a control strategy based on hand motion intention to drive robot in advance to realize human-computer cooperation.
|
Received: 07 January 2020
Published: 31 December 2021
|
|
Fund: 国家自然科学基金资助项目(U1713218);广东省重点领域研发计划项目(2020B010165004) |
Corresponding Authors:
Hong-miao ZHANG
E-mail: 20185229042@stu.suda.edu.cn;zhanghongmiao@suda.edu.cn
|
基于样本熵与时频分析的手部抓握运动意图预测
针对上肢外骨骼控制信号产生与外部设备响应存在时间滞后导致脑机接口(BCI)系统实时性差的问题,采集被试手部自主抓握前运动相关皮质电位(MRCP) ,提出基于非线性复杂度特征样本熵 (SampEn)与线性幅值特征融合算法的手部运动意图预测方法. 从时频、神经复杂度分析不同大脑状态之间存在的差异,通过特征融合实现对手部抓握运动意图的预测. 基于特征融合意图离线预测准确率最高可达88.46%,可以在人体手部自主运动发生时刻?1 400 ms实现对手部运动预测. 与平静时期手部静止状态相比,被试产生手部抓握运动意图时脑电信号的功率谱与复杂度均产生明显变化,为基于手部运动意图预测提前驱动机器人实现人机协同提供控制策略.
关键词:
运动意图,
运动相关皮质电位,
非线性分析,
复杂度
|
|
[1] |
ROBINSON N, CHESTAR W J, SMITHA K G Use of mobile EEG in decoding hand movement speed and position[J]. IEEE Transactions on Human-Machine Systems, 2021, 51 (2): 120- 129
doi: 10.1109/THMS.2021.3056274
|
|
|
[2] |
KO W, JEON E, JEONG S, et al Multi-scale neural network for EEG representation learning in BCI[J]. IEEE Computational Intelligence Magazine, 2021, 16 (2): 31- 45
doi: 10.1109/MCI.2021.3061875
|
|
|
[3] |
GAO H B, LUO L, PI M, et al EEG-based volitional control of prosthetic legs for walking in different terrains[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18 (2): 530- 540
doi: 10.1109/TASE.2019.2956110
|
|
|
[4] |
LEIGH H, DANIEL B, BEATA J, et al Reach and grasp by people with tetraplegia using a neurally controlled robotic arm[J]. Nature, 2012, 485 (7398): 372- 375
doi: 10.1038/nature11076
|
|
|
[5] |
CRUZ A, PIRES G, LOPES A, et al A self-paced BCI with a collaborative controller for highly reliable wheelchair driving: experimental tests with physically disabled individuals[J]. IEEE Transactions on Human-Machine Systems, 2021, 51 (2): 109- 119
doi: 10.1109/THMS.2020.3047597
|
|
|
[6] |
LIN J J, LIANG L Y, HAN X, et al Cross-target transfer algorithm based on the volterra model of SSVEP-BCI[J]. Tsinghua Science and Technology, 2021, 26 (4): 505- 522
doi: 10.26599/TST.2020.9010015
|
|
|
[7] |
NAJJAR A B, ALSAHLY N, ALSHAMASS R, et al Toward the optimization of the region-based P300 speller[J]. Computers, Materials and Continua, 2021, 67 (1): 1169- 1189
doi: 10.32604/cmc.2021.014140
|
|
|
[8] |
FENG Z Q, HE Q H, ZHANG J N, et al A hybrid BCI system based on motor imagery and transient visual evoked potential[J]. Multimedia Tools and Applications, 2020, 79 (15): 10327- 10340
doi: 10.1007/s11042-019-7607-3
|
|
|
[9] |
李瀚哲, 张小栋, 李睿, 等 利用运动准备电位的人体下肢自主运动意图预先感知方法[J]. 西安交通大学学报, 2019, 53 (10): 16- 23 LI Han-zhe, ZHANG Xiao-dong, LI Rui, et al A preperception method for voluntary movement intention of lower limb using readiness potential[J]. Journal of Xi’an Jiaotong University, 2019, 53 (10): 16- 23
|
|
|
[10] |
YU K, LIU C, NIU X D, et al Transcranial focused ultrasound neuromodulation of voluntary movement-related cortical activity in humans[J]. IEEE Transactions on Bio-Medical Engineering, 2021, 68 (3): 1923- 1931
|
|
|
[11] |
MISHRA A, SHARMA S, KUMAR S, et al Effect of hand grip actions on object recognition process: a machine learning-based approach for improved motor rehabilitation[J]. Neural Computing and Applications, 2020, 33 (7): 2339- 2350
doi: 10.1007/s00521-020-05125-w
|
|
|
[12] |
OJHA M K, MUKUL M K A novel approach based on EMD to improve the performance of SSVEP based BCI system[J]. Wireless Personal Communications, 2021, 118 (4): 2455- 2467
doi: 10.1007/s11277-021-08135-6
|
|
|
[13] |
吕金虎. 混沌时间序列分析及其应用[M]. 武汉: 武汉大学出版社, 2005: 25-30.
|
|
|
[14] |
胡瑜, 陈涛 基于C-C算法的混沌吸引子的相空间重构技术[J]. 电子测量与仪器学报, 2012, 26 (5): 425- 430 HU Yu, CHEN Tao Phase-space reconstruction technology of chaotic attractor based on C-C method[J]. Journal of Electronic Measurement and Instrument, 2012, 26 (5): 425- 430
|
|
|
[15] |
PINCUS S M, GOLDBERGER A L Physiological time-series analysis: what does regularity quantify?[J]. The American Journal of physiology, 1994, 266 (4): H1643- H1656
doi: 10.1152/ajpheart.1994.266.4.H1643
|
|
|
[16] |
LUBETZKY A V, HAREL D, LUBETZKY E On the effects of signal processing on sample entropy for postural control[J]. PloS ONE, 2018, 13 (3): 1- 15
|
|
|
[17] |
RICHMAN J S, MOORMAN J R Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2000, 47 (6): H2039- H2049
|
|
|
[18] |
CHEN S F, LUO Z Z, GAN H T An entropy fusion method for feature extraction of EEG[J]. Neural Computing and Applications, 2018, 29 (10): 857- 863
doi: 10.1007/s00521-016-2594-z
|
|
|
[19] |
PFURTSCHELLER G, DA SILVA F H L Event-related EEG/MEG synchronization and desynchronization: basic principles[J]. Clinical Neurophysiology, 1999, 110 (11): 1842- 1857
doi: 10.1016/S1388-2457(99)00141-8
|
|
|
[20] |
孙颖, 马江河, 张雪英 结合非线性全局特征和谱特征的脑电情感识别[J]. 计算机工程与应用, 2018, 54 (17): 116- 121 SUN Ying, MA Jian-he, ZHANG Xue-ying EEG emotion recognition based on nonlinear global features and spectral feature[J]. Computer Engineering and Applications, 2018, 54 (17): 116- 121
doi: 10.3778/j.issn.1002-8331.1803-0027
|
|
|
[21] |
王卫星, 孙守迁, 李超, 等 基于卷积神经网络的脑电信号上肢运动意图识别[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1381- 1389 WANG Shou-Xing, SUN Shou-qian, LI Chao, et al Recognition of upper limb motion intention of EEG signal based on convolutional neural network[J]. Journal of Zhejiang Unive-rsity: Engineering Science, 2017, 51 (7): 1381- 1389
|
|
|
[22] |
EZZATDOOST K, HOJJATI H, AGHAJAN H Decoding olfactory stimuli in EEG data using nonlinear features: a pilot study[J]. Journal of Neuroscience Methods, 2020, (341): 108780
|
|
|
[23] |
明东, 顾斌, 蒋晟龙, 等 运动相关皮质电位在运动康复领域的应用[J]. 纳米技术与精密工程, 2015, 13 (6): 425- 433 MING Dong, GU Bin, JIANG Sheng-long, et al Application of movement-related cortical potentials in the field of motor rehabilitation[J]. Nanotechnology and Precision Engineering, 2015, 13 (6): 425- 433
|
|
|
[24] |
OU B, RATHI V, LIN P, et al Prediction of human voluntary movement before it occurs[J]. Clinical Neurophysiology, 2011, 122 (2): 364- 372
doi: 10.1016/j.clinph.2010.07.010
|
|
|
[25] |
JOCHUMSEN M, NIAZI I K, TAYLOR D, et al Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG[J]. Journal of Neural Engineering, 2015, 12 (5): 056013
doi: 10.1088/1741-2560/12/5/056013
|
|
|
[26] |
ZENG H, XU B, LI H, et al. Investigation of phase features of movement related cortical potentials for upper-limb movement intention detection [C]// ICIRA 2017 Intelligent Robotics and Applications. [S. l.] : Springer, 2017: 350-358.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|