Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Traffic Engineering     
Similarity of centrifuge modeling of chloride dispersion in low permeability clay
ZENG Xing1,2, ZHAN Liang tong1, ZHONG xiao le3, CHEN Yun min1
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, hejiangUniversity, Hangzhou 310058, China;2.School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201,China;3. China Construction Installation Engineering Company Limited, Nanjing 210000,China
Download:   PDF(1205KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  
Kaolin clay and chloride were selected as testing materials for the experimental study on the similitude of dispersion in low permeability clay between centrifuge model and real prototype. Diffusion tests were firstly conducted to determine the relationship between the coefficient of effective diffusion and the void ratio. Then, soil column tests with different values of advection velocity were conducted at 1g and under centrifuge conditions (25g-50g) to obtain the relationship between the coefficient of hydrodynamic dispersion relative to free solution diffusion and Peclet number (Pe). Based on the experimental results, it is found that when Pe is defined based on dispersivity, the previously reported critical Péclet number (Pe=1) can be used for judging similitude of centrifuge modeling ofdispersion in the Kaolin clay. When Pe is defined based on the mean particle size of the clay, the critical Péclet number is much less than 1. When the transport of non reactive pollutant in a 2 m thick low permeability clay liner being subject to a hydraulic head less than 40 mis concerned, the difference between centrifuge modeling with an accelerationless than 100g and real prototype is less than 24%.


Published: 01 February 2016
CLC:  TU 411  
Cite this article:

ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 241-249.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.02.007     OR     http://www.zjujournals.com/eng/Y2016/V50/I2/241


低渗透黏土中氯离子弥散作用离心模拟相似性

针对低渗透黏土中弥散作用离心模拟的相似性问题,以高岭土和氯离子为材料,开展高岭土重塑试样的纯扩散试验,获得氯离子有效扩散系数与孔隙比的关系;在常重力(1g)和超重力(25g~50g)环境下开展不同流速的土柱试验,得到水动力弥散系数与分子扩散系数的比值与Péclet数(Pe)的关系.试验结果分析表明:当Pe基于弥散度定义时,可沿用目前的标准(即Pe=1)判别高岭土中弥散作用的相似性;当Pe基于平均粒径定义时,判别高岭土中弥散作用相似性的临界Pe远小于1.当离心机模拟氯离子击穿2 m厚黏土衬垫时,对于填埋场可能遭遇水头差(0~40 m),当离心机加速度不高于100g时,击穿时间模拟误差不超过24%.

[1] ARULANANDAN K, THOMPSON P Y, KUTTER B L, et al. Centrifuge modeling of transport processes for pollutants in soils [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(2): 185-205.
[2] HENSLEY P J, SCHOFIELD A N. Accelerated physical modelling of hazardous waste transport [J]. Geotechnique, 1991, 41(3): 447-465.
[3] LO I M C, ZHANG J, HU L. Centrifuge modeling of cadmium migration in saturated and unsaturated soils [J]. Soil & Sediment Contamination, 2005, 14(5): 417-431.
[4] 蔡红.污染物在低渗透性土体中迁移的离心模型试验研究[D].北京:中国农业大学, 2007.
CAI Hong. Centrifuge modeling of pollutant migration in low permeability soil[D]. Beijing: China Agricultural University, 2007.
[5] ZHANG J, LO I M C. Centrifuge study of long term transport behavior and fate of copper in soils at various saturation of water, compaction and clay content[J]. Soil & Sediment Contamination, 2008, 17(3): 237255.
[6] KUMAR R P, SINGH D N. Geotechnical centrifuge modeling of chloride diffusion through soils[J]. International Journal of Geomechanics, 2012, 12(3), 327-332.
[7] TAYLOR R N. Geotechnical centrifuge technology[M]. Glasgow: Blackie Academic and Professional, 1995,211-213.
[8] CELORIE J A, VINSON T S, Woods S L, et al. Modeling solute transport by centrifugation[J].Journal of Environmental Engineering, 1989, 115(3): 513-526.
[9] NAKAJIMA H, HIROOKA A, TAKEMURA J, et al. Centrifuge modeling of one dimensional subsurface contamination [J]. Journal of the American Water Resources Association, 1998, 34( 6): 1415-1425.
[10] GURUNG SB, ALMEIDA MSS, BICALHO KV. Migration of zinc through sedimentary soil models[C]∥ Centrifuge 98. Tokyo: [s.n.], 1998, 1: 589-594.
[11] SAFFMAN P G. A theory of dispersion in a porous medium [J]. Journal of Fluid Mechanics, 1959, 6(3): 321-349.
[12] SAFFMAN P G. Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries[J]. Journal of Fluid Mechanics, 1960, 7(2): 194-208.
[13] BACHMAT Y. On the similitude of dispersion phenomena in homogeneous and isotropic porous mediums [J]. Water Resources Research, 1967, 3 (4 ): 1079-1083.
[14] BEAR J, VERRUIIT A. Modeling groundwater flow and pollution[M]. Dordrecht, Holland: Reidelx, 1987: 161-167.
[15] HENSLEY P J, RANDOLPH M F. Modelling contaminant disPersion in saturated sand[C]∥Proceedings of the International Conference on Soil Mechanics and Foundation Engineering International Society for Soil Mechanisc and Mechanics and Foundation Engineering. New Delhi: BalkemA, 1994, 4: 1557-1557.
[16] TIMMS W A, HENDRY M J. Long term reactive solute transport in an aquitard ssing a centrifuge mode[J]. Ground Water, 2008, 46(4): 616628.
[17] MCKINLEY J D, PRICE A, LYNCH R J, et al. Centrifuge modelling of the transport of a pulse of two contaminants[J]. Geotechnique, 1998, 48(3): 421-425.
[18] 钟孝乐.重金属在高岭土中对流 弥散参数的测试研究[D].杭州:浙江大学,2013: 27-35.
ZHONG Xiao le. Study on the testing of convection diffusion parameters of heavy metals in kaolin clay[D]. Hangzhou: Zhejiang University, 2013: 27-35.
[19] 陈云敏,韩超,凌道盛,等.ZJU400离心机研制及其振动台性能评价[J].岩土工程学报,2011,33(12): 1887-1894.
CHEN Yun min, HAN Chao, LING Dao sheng et al.Development of geotechnical centrifuge ZJU400 and performance assessment of its shaking table system [J]. Chinese Journal of Geotechnical Engineering, 2011,33(12): 1887-1894.
[20] CRANK J. The mathematics of diffusion[M].2ed.New York: Clarendon Press, 1975: 4-7.
[21] SHARMA H D, REDDY K R. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies[M].New York: HarperCollins UK, 2004, 170-172.
[22] 詹良通,曾兴,李育超,等.高水头条件下氯离子击穿高岭土衬垫的离心模型试验研究[J].长江科学院院报,2012, 29(2): 83-89.
ZHAN Liang tong, ZENG Xing, LI Yu chao, et al. Centrifuge modeling for breakthrough of chloride in a Kaolin clay liner subject to a high hydraulic head[J]. Journal of Yangtze River Scientific Research Institute, 2012, 29(2): 83-89.
[23] VAN GENUCHTEN M T, PARKER J C. Boundary conditions for displacement experiments through short laboratory soil columns [J]. Soil Science Society of America Journal. 1984, 48(4): 703-708.
[24] PARKER J C, VAN GENUCHTEN M T. Flux averaged and volume averaged concentrations in continuum approaches to solute transport [J]. Water Resources Research, 1984, 20(7), 866-872.
[25] SHACKELFORD C D. Critical concepts for column testing [J]. Journal of Geotechnical Engineering, 1994, 120(10): 1804-1828.
[26] 郑春苗,贝内特,孙晋玉,等.地下水污染物迁移模拟[M].北京:高等教育出版社, 2009: 37.
[27] CJJ 17 2004.生活垃圾卫生填埋技术规范[S]. 北京:中国建筑工业出版社, 2004.
CJJ 17 2004. Technical code for municipal solid waste sanitary landfill[S]. Beijin: China Architecture & Building Press, 2004.

[1] JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min. Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2128-2134.
[2] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1849-1854.
[3] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 813-821.
[4] ZHANG Ru ru, ZHAO Yun, XU Wen jie,HUANG Bo,LING Dao sheng,HAN Li ming. Water gas migration analysis in runway subgrade soil under influence of temperature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 822-830.
[5] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 8-15.
[6] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2142-2150.
[7] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1417-1425.
[8] LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1389-1394.
[9] ZHONG Xiao-le, ZHAN Liang-tong, GONG Biao, ZENG Xing, CHEN Yun-min. Consolidation permeability and adsorption properties of three kinds of typical kaolin clays in China[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1947-1954.
[10] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1976-1982.
[11] XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1941-1946.
[12] TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Dynamic wind load combination of tall buildings based on Copula functions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1370-1375.
[13] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1345-1352.
[14] LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 843-849.
[15] LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, Du Li-li. Experimental investigation of seepage barrier effect by air-inflation in soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 236-241.