Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou
XU Ri-qing1, CHANG Shuai1, YU Yuan-hong2, LU Jian-yang1
1.Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, 310058, China; 2.Zhejiang Reclaim Construction Group Co., LTD., Zhejiang,Ningbo, 315040,China.
Download:   PDF(642KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to consider comprehensively the influence of initial water content, organic matter content, mixing ratios of cement and CX-13 agent on solidification, and further propose solidification schemes for different soils pertinently, response surface methodology (RSM) based on central composite rotatable design (CCRD) was employed for experiment arrangement, in which response values were unconfined compressive strength of 28 days andindependent variables were initial water content, organic matter content, mixing ratios of cement and CX-13. By regression analysis of test results, a quantitative model between independent variables and response values was constructed, mutual-influences of independent variables were analyzed, and mechanism of mutual-influences was explored. The result shows thatorganic matter content corresponding to the peak value of strength reduces with the increase of cement mixing ratiowhileinitial water content and CX-13 mixing ratioarefixed,initial water content corresponding to the peak value of strength grows with the increase of cement mixing ratiowhileorganic matter content and CX-13 mixing ratioare fixed. The optimal cement mixing ratio is positively related with CX-13 content once organic matter content and initial water content are fixed.



Published: 01 November 2014
CLC:  TU 411  
  TU 472  
Cite this article:

XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1941-1946.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.11.005     OR     http://www.zjujournals.com/eng/Y2014/V48/I11/1941


基于响应面法的杭州海相软土固化强度模型

为了综合考察土初始含水量、土有机质含量、水泥掺量比及固化剂CX-13掺量对固化效果的影响,对不同土体提出固化方案,以有机质含量、初始含水量、水泥掺量、CX-13掺量作为4个自变量,以固化土28 d无侧限抗压强度作为响应值,采用旋转中心组合设计安排试验.利用响应面法对试验结果进行回归分析,建立各自变量与强度响应间的量化模型.考察各自变量间的交互作用关系,并从机理上对各交互关系进行探讨.结果表明:固定初始含水量与CX-13掺量,强度响应峰值对应的有机质含量随水泥掺量的增大而减小;固定有机质含量与CX-13掺量,强度响应峰值对应的初始含水量随水泥掺量的增大而增大;固定有机质含量与初始含水量,水泥的最佳掺量与CX-13掺量呈正相关关系.

[1]李雪刚, 徐日庆, 王兴陈, 等. 杭州地区海、湖相软土的工程特性评价[J]. 浙江大学学报:工学版, 2013, 47(8): 1346-1352.
LI Xue-gang, XU Ri-qing, WANG Xing-chen, et al. Assessment of engineering properties for marine and lacustrine soft soil in Hangzhou[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(8): 1346-1352.
[2]刘顺妮, 林宗寿, 陈云波. 高含水量黏土固化剂的研究[J]. 岩土工程学报, 1998, 20(4): 72-75.
LIU Shun-ni, LIN Zong-shou, CHEN Yun-bo. On the stabilizer for the soil with higher water content [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 72-75.
[3]汤怡新, 刘汉龙, 朱伟. 水泥固化土工程特性试验研究[J]. 岩土工程学报, 2000, 22(5): 549-554.
TANG yi-xin, LIU Han-long, ZHU Wei. Study on engineering properties of cement-stabilized soil [J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5): 549-554.
[4]荀勇. 有机质含量对水泥土强度的影响与对策[J]. 四川建筑科学研究, 2000, 26(3): 58-60.
XUN Yong. The anti-influences and influences of soil containing organic matter on cement soil strength[J]. Building Science of Sichuan, 2000, 26(3): 58-60.
[5]范昭平, 朱伟, 张春雷. 有机质含量对淤泥固化效果影响的试验研究[J]. 岩土力学, 2005, 26(8): 1327-1334.
FAN Zhao-ping, ZHU Wei, ZHANG Chun-lei. Experimental study on influence of organic matter content on solidified dredging\[J\]. Rock and Soil Mechanics, 2005, 26(8): 1327-1334.
[6]储诚富, 邵俐, 刘松玉, 等. 有机质含量对水泥土强度影响的室内定量研究[J]. 岩土力学, 2006, 27(9): 1613-1616.
CHU Chen-fu, SHAO Li, LIU Song-yu, et al. Laboratory study quantitatively on effect of organic content on strength of cement-mixed clays [J]. Rock and Soil Mechanics, 2006, 27(9): 1613-1616.
[7] 王立峰, 翟惠云. 纳米硅水泥土抗压强度的正交试验和多元线性回归分系[J]. 岩土工程学报, 2010, 32(s1): 452457.
WANG Li-feng, ZHAI Hui-yun. Orthogonal test and regression analysis of compressive strength of nanometer silicon and cement-stabilized soils [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(s1): 452-457.
[8] 郭印, 徐日庆, 邵允铖. 淤泥质土的固化机理研究[J]. 浙江大学学报:工学版, 2008, 42(6): 1071-1075.
GUO Yin, XU Ri-qing, SHAO Yun-cheng. Study on mechanism of muddy soil stabilization[J]. Journal of Zhejiang University:Engineering Science, 2008, 42(6): 1071-1075.
[9] TABARAKI R, NATEGHI A. Optimization of ultrasonic- assisted extraction of natural antioxidants from rice bran using response surface methodology [J]. Ultrasonics Sonochemistry, 2011, 18(6): 1279-1286.
[10] TAN I A W, AHMAD A L, HAMEED B H. Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology[J]. Chemical Engineering Journal, 2008, 137(3): 462-470.
[11] LAY J J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen [J]. Biotechnology and Bioengineering, 2000, 68(3): 269-278.
[12] KHOUNI I, MARROT B, MOULIN P, et al. Decolouriza- tion of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes [J]. Desalination, 2011, 268(1/3): 27-37.
[13] ASLAN N. Application of response surface methodology and central composite rotatable design for modeling and optimization of a multi-gravity separator for chromite concentration [J]. Powder Technology, 2008, 185(1): 80-86.
[14] YCEL Y. Optimization of biocatalytic biodiesel production from pomace oil using response surface methodology[J]. Fuel Processing Technology, 2012, 99(7): 97-102.
[15] 杨爱武, 杜东菊, 赵瑞斌, 等. 水泥及其外加剂固化天津海积软土的试验研究[J]. 岩土力学, 2007, 28(9): 1823-1827.
YANG Ai-wu, DU Dong-ju, ZHAO Rui-bin, et al. Experimental study on cement and its additional agent to cure Tianjin marine soft soil [J]. Rock and Soil Mechanics, 2007, 28(9): 1823-1827.

[1] JIAO Wei guo, ZHAN Liang tong, LAN Ji wu, CHEN Yun min. Analysis of capillary barrier effect and design thickness with loess-gravel cover[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2128-2134.
[2] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 1849-1854.
[3] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 813-821.
[4] ZHANG Ru ru, ZHAO Yun, XU Wen jie,HUANG Bo,LING Dao sheng,HAN Li ming. Water gas migration analysis in runway subgrade soil under influence of temperature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(5): 822-830.
[5] ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 241-249.
[6] ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 8-15.
[7] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(11): 2142-2150.
[8] XU Ri-qing, XU Li-yang, DENG Yi-wen, ZHU Yi-hong. Experimental study on soft clay contact area based on SEM and IPP[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(8): 1417-1425.
[9] LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(7): 1389-1394.
[10] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1976-1982.
[11] ZHONG Xiao-le, ZHAN Liang-tong, GONG Biao, ZENG Xing, CHEN Yun-min. Consolidation permeability and adsorption properties of three kinds of typical kaolin clays in China[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1947-1954.
[12] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1345-1352.
[13] TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Dynamic wind load combination of tall buildings based on Copula functions[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(8): 1370-1375.
[14] LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 843-849.
[15] LIU Chang-dian, SUN Hong-yue, KANG Jian-wei, Du Li-li. Experimental investigation of seepage barrier effect by air-inflation in soil[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 236-241.