Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (4): 793-800    DOI: 10.3785/j.issn.1008-973X.2021.04.022
    
Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation
Hui XIONG(),Zhao JING,Jin-zhen LIU
1. School of Electrical Engineering and Automation, TIANGONG University, Tianjin 300387, China
2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy, TIANGONG University, Tianjin 300387, China
Download: HTML     PDF(1112KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new three-layer figure-of-8 coil with the special structure and current direction was designed and optimized based on the superposition and cancellation of magnetic field. COMSOL simulation software was used to analyze the effects of the three-layer figure-of-8 coil with the changing of size and the rotation angle along the tangent line on the stimulation performance, and the coil structure was optimized. The stimulation intensity of the optimized three-layer figure-of-8 coil was increased by 33.92% and the focality was improved by 25.43% compared with figure-of-8 coil. Results show that the three-layer figure-of-8 coil has better stimulation intensity and focality at a certain target position. Then the adverse effects of non-target areas were greatly reduced, and the safety of TMS treatment was guaranteed. The performance advantages of the optimized three-layer-8-shaped coil were verified by stimulating the realistic head model.



Key wordstranscranial magnetic stimulation      three-layer figure-of-8 coil      focality      stimulation depth      stimulation intensity     
Received: 01 April 2020      Published: 07 May 2021
CLC:  R 318  
  R 856  
Fund:  国家自然科学基金资助项目(61871288);天津市高等学校创新团队培养计划资助项目(TD13-5036);天津市自然科学基金资助项目(18JCYBJC 90400,18JCQNJC84000)
Cite this article:

Hui XIONG,Zhao JING,Jin-zhen LIU. Structural design of novel three-layer figure-of-8 coil for transcranial magnetic stimulation. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 793-800.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.04.022     OR     http://www.zjujournals.com/eng/Y2021/V55/I4/793


新型经颅磁刺激三层-8字形线圈的结构设计

基于磁场的叠加与抵消,设计与优化具有特殊结构和电流方向的三层-8字形线圈. 利用COMSOL仿真软件,分析三层-8字形线圈尺寸和沿切线旋转角度的改变对刺激性能的影响,优化线圈结构. 与8字形线圈相比,优化后的三层-8字形线圈的刺激强度提高33.92%,聚焦性提高25.43%. 结果表明,在目标靶点处,优化后三层-8字形线圈具有更强的刺激强度和聚焦性,有效减弱对非目标区域的不良影响,保证TMS治疗的安全性. 通过刺激真实头部模型,验证优化后三层-8字形线圈的性能优势.


关键词: 经颅磁刺激,  三层-8字形线圈,  聚焦性,  刺激深度,  刺激强度 
Fig.1 Two layers ball-shaped head model with stimulation coils
Fig.2 Three-layer figure-of-8 coil with different stimulating current directions and radii as well as three types of structures rotating along tangent
线圈类型 参数
Ⅰ类 Routi=15.5 mm,routi = 27.5 mm
Ⅱ类 Routi=17.5 mm,routi = 25.5 mm
Ⅲ类 Routi=19.5 mm,routi = 23.5 mm
Ⅳ类 Routi =21.5 mm,routi = 21.5 mm
Ⅴ类 Routi =23.5 mm,routi =19.5 mm
Ⅵ类 Routi =25.5 mm,routi =17.5 mm
Ⅶ类 Routi =27.5 mm,routi =15.5 mm
Tab.1 Seven types of coils with various outer radii
线圈 Emax /(V·m?1 d1/2 /mm S1/2 /cm2
8字形线圈 167.74 18.38 14.820
双层-8字形线圈 189.33 16.34 12.845
三层-8字形线圈 172.98 14.12 9.925
Tab.2 Stimulation calculation results of three different coils
Fig.3 Relation between maximum electric field strength,rotation angel θ and radius
Fig.4 Relation between stimulation depth,rotation angel θ and radius
Fig.5 Relation between focusing area,rotation angel θ and radius
Fig.6 Electric field strength distribution induced by optimal three-layer figure-of-8 coil at cerebral cortex
线圈 Emax /(V·m?1 d1/2 /mm S1/2 /cm2
8字形线圈 167.741 18.380 14.822
三层-8字形线圈 172.980 14.123 9.925
优化后的Ⅱ类三层-8字形线圈
(Routi=17.5 mm,routi=25.5 mm,θ=3°)
224.643 15.004 11.052
Tab.3 Stimulation calculation results of figure-of-8 and three-layer figure-of-8 coil before and after optimization
Fig.7 Structure of realistic head model
Fig.8 Induced electric field strength distribution map of three coils based on realistic head model
[1]   ZHANG Zhen, AI Wen-jie, DENG Bin, et al Improved figure-of-eight coil for transcranial magnetic stimulation using magnetic resonant coupling[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 9100605
[2]   DENG Bin, LI Shuai, LI Bin Noninvasive brain stimulation using strong-coupling effect of resonant magnetics[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 5800109
[3]   LI Yi-nan, COSOROABA E, MAHARJAN L, et al Comparative study of a new coil design with traditional shielded figure-of-eight coil for transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2017, 54 (3): 5100804
[4]   ISSERLES M, SHALEV A Y, ROTH Y, et al Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder: a pilot study[J]. Brain Stimulation, 2013, 6 (3): 377- 383
doi: 10.1016/j.brs.2012.07.008
[5]   LU M, UENO S. Deep transcranial magnetic stimulation using figure-of-eight and Halo coils [C]// IEEE International Magnetics Conference. [S. l.]: IEEE, 2015: 5101024.
[6]   FILIPCIC I, FILIPCIC I S, MILOVAC Z, et al Efficacy of repetitive transcranial magnetic stimulation using a figure-8-coil or an H1-Coil in treatment of major depressive disorder; a randomized clinical trial[J]. Journal of Psychiatric Research, 2019, 114: 113- 119
doi: 10.1016/j.jpsychires.2019.04.020
[7]   熊慧, 高毅娟, 刘近贞 基于经颅磁刺激的线圈阵列设计方法研究[J]. 航天医学与医学工程, 2018, 31 (5): 61- 66
XIONG Hui, GAO Yi-juan, LIU Jin-zhen Study on coil array design method based on transcranial magnetic stimulation[J]. Space Medicine and Medical Engineering, 2018, 31 (5): 61- 66
[8]   WEI X, LI Y, LU M, et al Comprehensive survey on improved focality and penetration depth of transcranial magnetic stimulation employing multi-coil arrays[J]. International Journal of Environmental Research and Public Health, 2017, 14 (11): 13881404
[9]   熊慧, 连璐, 刘近贞 基于人体头部模型的经颅磁刺激反向线圈研究[J]. 航天医学与医学工程, 2019, 32 (6): 517- 522
XIONG Hui, LIAN Lu, LIU Jin-zhen Study on reverse coil for transcranial magnetic stimulation based on human head model[J]. Space Medicine and Medical Engineering, 2019, 32 (6): 517- 522
[10]   DENG Z D, LISANBY S H, PETERCHEV A V Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs[J]. Brain Stimulation, 2012, 6 (1): 1- 13
[11]   WILLIAMS P I, MARKETOS P, CROWTHER L J, et al New designs for deep brain transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2012, 48 (3): 1171- 1178
doi: 10.1109/TMAG.2011.2170703
[12]   LUIS G, STEFAN G, PETERCHEV A V Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy[J]. Journal of Neural Engineering, 2018, 15 (4): 046033
doi: 10.1088/1741-2552/aac967
[13]   DENG Z D, LISANBY S H, PETERCHEV A V Coil design considerations for deep transcranial magnetic stimulation[J]. Clinical Neurophysiology, 2014, 125 (6): 1202- 1212
doi: 10.1016/j.clinph.2013.11.038
[14]   LEE W H, LISANBY S H, LAINE A F, et al Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model[J]. European Psychiatry the Journal of the Association of European Psychiatrists, 2016, 36: 55- 64
doi: 10.1016/j.eurpsy.2016.03.003
[15]   KRINGS T, BUCHBINDER B R, BUTLER W E, et al Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation[J]. Neurosurgery, 1997, 41 (6): 1319- 1325
doi: 10.1097/00006123-199712000-00016
[16]   JALINOUS R. Guide to magnetic stimulation [M]. Whitland, UK: The MagStim Company, 1998.
[17]   ZUCCA M, BOTTAUSCIO O, CHIAMPI M, et al Operator safety and field focality in aluminum shielded transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2017, 53 (11): 1- 4
[18]   GUADAGNIN V, PARAZZINI M, FIOCCHI S, et al Deep transcranial magnetic stimulation: modeling of different coil configurations[J]. IEEE Transactions BioMedical Engineering, 2016, 63 (7): 1543- 1550
doi: 10.1109/TBME.2015.2498646
[19]   熊慧, 王玉领, 付浩, 等 一种应用于经颅磁刺激脉冲宽度可调的节能型激励源[J]. 电工技术学报, 2020, 35 (4): 679- 686
XIONG Hui, WANG Yu-ling, FU Hao, et al An energy efficient excitation source for transcranial magnetic stimulation with controllable pulse width[J]. Transactions of China Electrotechnical Society, 2020, 35 (4): 679- 686
[20]   GOETZ S M, TRUONG C N, GERHOFER M G, et al Analysis and optimization of pulse dynamics for magnetic stimulation[J]. Plos One, 2013, 8 (3): e55771
doi: 10.1371/journal.pone.0055771
[21]   ROSSI S, HALLETT M, ROSSINI P M, et al Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research[J]. Clinical Neurophysiol, 2009, 120 (12): 2008- 2039
doi: 10.1016/j.clinph.2009.08.016
[22]   CHANG Si-yuan, WEI Xi-le, ZHANG Zhen, et al Twin coil design considerations for depth and focality in transcranial magnetic stimulation[J]. IEEE Transactions on Magnetics, 2018, 54 (11): 5001305
[23]   SAMOUDI A M, TANGHE E, MARTENS L, et al Deep transcranial magnetic stimulation: improved coil design and assessment of the induced fields using MIDA model[J]. Bio Med Research International, 2018, 2018: 7061420
[24]   GABRIEL C, GABRIEL S, CORTHOUT E The dielectric properties of biological tissues: literature survey[J]. Physics in Medicine and Biology, 1996, 41 (11): 2231- 2249
doi: 10.1088/0031-9155/41/11/001
[1] Yi-peng HUANG,Ji-su HU,Xu-sheng QIAN,Zhi-yong ZHOU,Wen-lu ZHAO,Qi MA,Jun-kang SHEN,Ya-kang DAI. SE-Mask-RCNN: segmentation method for prostate cancer on multi-parametric MRI[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 203-212.
[2] Ji-jun TONG,Yan-jie BAI,Jian-wei PAN,Jia-feng YANG,Lu-rong JIANG. Ballistocardiogram and respiratory signal separation based on variational mode decomposition[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 2058-2066.
[3] Yan-jia HONG,Tie-bao MENG,Hao-jiang LI,Li-zhi LIU,Li LI,Shuo-yu XU,Sheng-wen GUO. Deep segmentation method of tumor boundaries from MR images of patients with nasopharyngeal carcinoma using multi-modality and multi-dimension fusion[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 566-573.
[4] Yi YANG,Xu-sheng QIAN,Zhi-yong ZHOU,Jian-bing ZHU,Jun-kang SHEN,Ya-kang DAI. Classification of renal tumor histology subtypes using radiomics[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2381-2388.
[5] Qian WU,Ping WANG. Screening and bioinformatics analysis of lung cancer exhale breath biomarkers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2389-2395.
[6] Jing YANG,Chen GENG,Hai-lin WANG,Jian-song JI,Ya-kang DAI. Classification on histological subtypes of lung adenocarcinoma from low-resolution CT images based on DenseNet[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1164-1170.
[7] Yong HE,Qing GAO,An LIU,Miao SUN,Jian-zhong FU. 3D bioprinting: from structure to function[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 407-419.
[8] WANG Qin, FANG Jia ru, CAO Duan xi, ZHOU Jie, SU Kai qi, LI Hong bo, WANG Ping. Optimization design and drug analysis of cardiomyocytebased biosensor[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1214-1220.
[9] WANG Qin, FANG Jia ru, CAO Duan xi, ZHOU Jie,SU Kai qi, LI Hong bo, WANG Ping. Optimization design and drug analysis of cardiomyocyte based biosensor[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2432-2438.
[10] CHEN Jing, XU Min fen, WANG Li qiang, YUAN Bo, DUAN Hui long, TANG Jia. Objective evaluation method for enhanced effects of FICE images[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 2013-2017.
[11] ZHENG Xiang, ZHANG Yin sheng, HUANG Zhen zhen, JIA Zheng, DUAN Hui long, ZHAO Yin hong, LI Hao min. Extensible framework of integration for CDS applications[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1658-1664.
[12] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 792-797.
[13] ZHOU Cong-cong, TU Chun-long, GAO Yun, WANG Fei-xiang, HE Cheng, GONG Hong-wei, LIAN Ping, YE Xue-song. Low power, wireless, wrist-worn device for HR monitoring based on double channels of pulse sensing[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 798-806.
[14] LI Jiang, ZHAO Ya-qiong, BAO Ye-hua. Voice processing technique for patients with stroke based on chao theory and surrogate data analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 36-41.
[15] HE Wei, XIA Ling. Region-growing phase unwrapping method based on mask[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1-2.