Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (9): 1812-1818    DOI: 10.3785/j.issn.1008-973X.2020.09.018
    
Ammonia effect on optical properties of secondary organic aerosols
Jun-ming WANG1(),Xing-ya ZHAO2,Ling-hong CHEN2,*(),Li-xia HAN2,Xiang GAO2,Ke-fa CEN2
1. Thermal Power Plant of Sinopec Qilu Branch, Zibo 255410, China
2. Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(955KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of toluene/NOx photo-oxidation experiments were carried out in a smog chamber, and the effect of ammonia on the optical properties of secondary organic aerosols (SOA) evolved by toluene was investigated. The chamber was made of Teflon. The distribution of SOA particle size, extinction efficiency, and mass spectrometric patterns were measured simultaneously during the experimental process. The variation of SOA parameters was discussed, including extinction section, refractive index, and particle size by changing ammonia volume fraction. Results show that the extinction of SOA was dominated by scattering. With the increase of particle size, the extinction cross section exponentially increases, the refractive index firstly increases and then decreases. Compared with low humidity ammonia free environment, the increase of molar ratios of O to C and refractive index of SOA was found either increasing humidity or with ammonia. Under high humidity with ammonia, there is obvious decrease of particle size, sharp increase of number density of particles, and increase both molar ratios of O to C and N to C.



Key wordstoluene      secondary organic aerosols (SOA)      ammonia      humidity      refractive index     
Received: 15 November 2019      Published: 22 September 2020
CLC:  X 511  
Corresponding Authors: Ling-hong CHEN     E-mail: wangjm.qlsh@sinopec.com;chenlh@zju.edu.cn
Cite this article:

Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.09.018     OR     http://www.zjujournals.com/eng/Y2020/V54/I9/1812


氨对二次有机气溶胶光学特性的影响

开展一系列甲苯/NOx光氧化烟雾箱模拟实验,研究大气环境中氨对二次有机气溶胶(SOA)光学特性的影响. 采用特氟龙膜作为烟雾箱的反应腔材料,实验过程中同时检测颗粒的粒径分布、光学参数和质谱信息. 讨论不同氨体积分数对甲苯光氧化生成SOA的消光截面、复折射率及粒径等参数的变化特征. 研究发现,上述实验中SOA的消光作用均以散射为主;随着粒径的增大,消光截面呈指数增大,复折射率则先增大后减小. 与低湿无氨环境相比,增湿或加氨均导致SOA中元素O和C物质的量之比增大、复折射率增大;高湿加氨条件下,SOA的粒径明显减小、颗粒数密度急剧增大、SOA中元素O和C的物质的量之比、元素N和C的物质的量之比均增大.


关键词: 甲苯,  二次有机气溶胶(SOA),  氨,  湿度,  复折射率 
实验序号 φNH3/10?9 φC7H8/10?9 φNO/10?9 φNO2/10?9 RH/%
ZJU235 0 120.6 62 1.3 ~7
ZJU239 0 146.8 63 1.4 ~7
ZJU243 50 147.3 62 1.9 ~7
ZJU246 50 154 62 2.6 ~7
ZJU249 0 158.2 57 1.1 68
ZJU252 50 184 58 2.1 63
ZJU254 50 ? 63 1.4 65
Tab.1 Initial values of parameters during toluene/NOx photo-oxidation experiments
Fig.1 Temporal profile of surface mean diameter and number concentration of secondary organic aerosol(SOA)during experimental process
Fig.2 Relationship between efficiencies of extinction and scattering during experimental process
Fig.3 Relationship between extinction efficiency of SOA and particle diameter during experimental process
Fig.4 Relationship of refractive index of SOA and mean diameter under different experimental conditions
Fig.5 Relationship between proportion of ions in organic debris of SOA and ratio of mass to charge
Fig.6 Relationship of refractive index of organic aerosol and its molar ratios of O to C and N to C
[1]   JOYCE E P, DONG X Q, CHEN Y Observational evidence of a change in radiative forcing due to the indirect aerosol effect[J]. Nature, 2004, 427 (6971): 231- 234
doi: 10.1038/nature02234
[2]   CHAND D, WOOD R, ANDERSON T L, et al Satellite-derived direct radiative effect of aerosols dependent on cloud cover[J]. Nature Geoscience, 2009, 2 (3): 181- 184
doi: 10.1038/ngeo437
[3]   HARVEY R M, BATEMAN A P, JAIN S, LI Y J, et al Optical properties of secondary organic aerosol from cis-3-hexenol and cis-3-hexenyl acetate: effect of chemical composition, humidity, and phase[J]. Environmental Science and Technology, 2016, 50 (10): 4997- 5006
doi: 10.1021/acs.est.6b00625
[4]   LI K W, CHEN L H, WHITE S J, et al Chemical characteristics and sources of PM1 during the 2016 summer in Hangzhou [J]. Environmental Pollution, 2018, 232: 42- 54
doi: 10.1016/j.envpol.2017.09.016
[5]   ZHAO J, QIU Y M, ZHOU W, et al Organic aerosol processing during winter severe haze episodes in Beijing[J]. Journal of Geophysical Research: Atmospheres, 2019, 124 (17/18): 10248- 10263
doi: 10.1029/2019JD030832
[6]   WANG Y C, WANG Q Y, YE J H, et al A review of aerosol chemical composition and sources in representative regions of China during wintertime[J]. Atmosphere, 2019, 10 (5): 277- 292
doi: 10.3390/atmos10050277
[7]   NAKAYAMA T, MATSUMI Y, SATO K, et al Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α-pinene [J]. Journal of Geophysical Research, 2010, 115 (D24): 11
[8]   DENJEAN C, FORMENTI P, PICQUET-VARRAULT B, et al Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene [J]. Atmospheric Chemistry and Physics, 2015, 15 (6): 3339- 3358
doi: 10.5194/acp-15-3339-2015
[9]   LI K, WANG W G, GE M F, et al Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons[J]. Scientific Reports, 2014, 4 (1): 4922- 4931
[10]   REDMOND H, THOMPSON J E Evaluation of a quantitative structure-property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA)[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13 (15): 6872- 3882
doi: 10.1039/c0cp02270e
[11]   NAKAYAMA T, SATO K, MATSUMI Y, IMAMURA T, et al Wavelength and NOx dependent complex refractive index of SOAs generated from the photooxidation of toluene [J]. Atmospheric Chemistry and Physics, 2013, 13 (2): 531- 545
doi: 10.5194/acp-13-531-2013
[12]   LI J L, LI K, WANG W G, WANG J, et al Optical properties of secondary organic aerosols derived from long-chain alkanes under various NOx and seed conditions [J]. Science of the Total Environment, 2017, 579: 1699- 1705
doi: 10.1016/j.scitotenv.2016.11.189
[13]   JIA L, XU Y F Effects of relative humidity on ozone and secondary organic aerosol formation from the photooxidation of benzene and ethylbenzene[J]. Aerosol Science and Technology, 2014, 48 (1): 1- 12
doi: 10.1080/02786826.2013.847269
[14]   LI K, LI J L, LIGGIO J, WANG W Q, et al Enhanced light-scattering of secondary organic aerosols by multiphase reactions[J]. Environmental Science and Technology, 2017, 51 (3): 1285- 1292
doi: 10.1021/acs.est.6b03229
[15]   NA K, SONG C, COCKER D R Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water[J]. Atmospheric Environment, 2006, 40 (10): 1889- 1900
doi: 10.1016/j.atmosenv.2005.10.063
[16]   NAKAYAMA T, SATO K, TSUGE M, et al Complex refractive index of secondary organic aerosol generated from isoprene/NOx photooxidation in the presence and absence of SO2[J]. Journal of Geophysical Research: Atmospheres, 2015, 120 (15): 7777- 7787
doi: 10.1002/2015JD023522
[17]   FU X, WANG S X, XING J, et al Increasing ammonia concentrations reduce the effectiveness of particle pollution control achieved via SO2 and NOx emissions reduction in east China [J]. Environmental Science and Technology Letters, 2017, 4 (6): 221- 227
doi: 10.1021/acs.estlett.7b00143
[18]   MOISE T, FLORES J M, RUDICH Y Optical properties of secondary organic aerosols and their changes by chemical processes[J]. Chemical Reviews, 2015, 115 (10): 4400- 4439
doi: 10.1021/cr5005259
[19]   LI K W, CHEN L H, HAN K, et al Smog chamber study on aging of combustion soot in isoprene/SO2/NOx system: changes of mass, size, effective density, morphology and mixing state [J]. Atmospheric Research, 2017, 184: 139- 148
doi: 10.1016/j.atmosres.2016.10.011
[20]   CHEN L H, LV B, ZHENG X J, et al Effect of relative humidity on non-refractory submicron aerosol evolution during summertime in Hangzhou, China[J]. Journal of Zhejiang University-SCIENCE A, 2018, 19 (1): 45- 59
doi: 10.1631/jzus.A1700567
[21]   PETZOLD A, ONASCH T, KEBABIAN P, et al Intercomparison study of the CAPS PMex (cavity attenuated phase shift particle light extinction monitor) with the combination of an integrating nephelometer and a particle soot absorption photometer [J]. Atmospheric Measurement Techniques, 2012, 5 (5): 7587- 7618
doi: 10.5194/amtd-5-7587-2012
[22]   徐俊, 黄明强, 冯状状, 等 氨与甲苯SOA形成含氮有机物的影响因素研究[J]. 中国环境科学, 2019, 39 (2): 533- 541
XU Jun, HUANG Ming-qiang, FENG Zhuang-zhuang, et al Study on the factors affecting the formation of nitrogen-containing organic compounds formed from ammonia and toluene secondary organic aerosol[J]. China Environmental Science, 2019, 39 (2): 533- 541
doi: 10.3969/j.issn.1000-6923.2019.02.011
[23]   LIU S J, TSONA N T, ZHANG Q, et al Influence of relative humidity on cyclohexene SOA formation from OH photooxidation[J]. Chemosphere, 2019, 231: 478- 486
doi: 10.1016/j.chemosphere.2019.05.131
[24]   HEALY R M, TEMIME B, KUPROVSKYTE K, et al Effect of relative humidity on gas/particle partitioning and aerosol mass yield in the photooxidation of p-xylene[J]. Environmental Science and Technology, 2009, 43 (6): 1884- 1889
doi: 10.1021/es802404z
[25]   HINKS M L, MONTOYA-AGUILERA J, ELLISON L, et al Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene[J]. Atmospheric Chemistry and Physics, 2018, 18 (3): 1643- 1652
doi: 10.5194/acp-18-1643-2018
[26]   DOCHERTY K S, CORSE E W, JAOUI M, et al Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol[J]. Aerosol Science and Technology, 2018, 52 (9): 992- 1004
doi: 10.1080/02786826.2018.1500014
[27]   JIA L, XU Y F Different roles of water in secondary organic aerosol formation from toluene and isoprene[J]. Atmospheric Chemistry and Physics, 2018, 18 (11): 8137- 8154
doi: 10.5194/acp-18-8137-2018
[28]   LIU T Y, HUANG D D, LI Z J, et al Comparison of secondary organic aerosol formation from toluene on initially wet and dry ammonium sulfate particles at moderate relative humidity[J]. Atmospheric Chemistry and Physics, 2018, 18 (8): 5677- 5689
doi: 10.5194/acp-18-5677-2018
[29]   DUPLISSY J, DECARLO P F, DOMMEN J, et al Relating hygroscopicity and composition of organic aerosol particulate matter[J]. Atmospheric Chemistry and Physics, 2011, 11 (3): 1155- 1165
doi: 10.5194/acp-11-1155-2011
[30]   NG N L, CANAGARATNA M R, ZHANG Q, et al Organic aerosol components observed in northern hemispheric datasets from aerosol mass spectrometry[J]. Atmospheric Chemistry and Physics, 2010, 10 (10): 4625- 4641
doi: 10.5194/acp-10-4625-2010
[31]   ALFARRA M R, PAULSEN D, GYSRL M, et al A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber[J]. Atmospheric Chemistry and Physics, 2006, 6 (12): 5279- 5293
doi: 10.5194/acp-6-5279-2006
[32]   NGUYEN T B, ROACH P J, LASKIN J, et al Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol[J]. Atmospheric Chemistry and Physics, 2011, 11 (14): 6931- 6944
doi: 10.5194/acp-11-6931-2011
[1] Song-tao JIN,Chang LIU,Li-ying WANG,Yang YANG. Heat transfer coefficient of passive house exterior wall in cold area[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1966-1976.
[2] REN Song, OUYANG Xun, WU Jian-xun, CHEN Fan, WANG Liang, CHEN Jie. Elastic-swelling analytical model of anhydrite rock considering time-dependent effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 896-905.
[3] LI Ying, YAN Guo-feng, WANG Yu, HUANG Yu-xin, DU Jian-xiang, XIE Li-juan, HE Sai-ling. Classification of tobacco aroma based on Terahertz time domain spectroscopy[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 537-542.
[4] SHANG Jian li, ZONG Zhi fang. Preparation of Ce-La/TiO2 hollow microspheres and its photocatalysis and humidity control performance based on humidity absorption and desorption[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 304-311.
[5] LIU Nan, TENG Fu hua, LU Jian hai, DONG Shi bi, GU Zhen yu. Treatment of exhaust gas from spray paint process Using photocatalytic-absorption method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 393-398.
[6] LUO Long-zao, SHAO Yu, TIAN Guang-ming. Ammonia stripping of piggery wastewater for microalgae culturing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2055-2060.
[7] HAN Zhong he, BAI Ya kai,Wang Ji xuan. Simulation of chilled ammonia process based carbon capture power plant and optimization of coupling method[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 499-507.
[8] YI Si yang,JIN Hong qing,FAN Li wu,XU Xu,YU Zi tao,GE Jian. Transient determination of water vapor diffusion coefficient of porous building materials[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 16-20.
[9] QIN Ya-nan, YANG Yu, SHI Wei, MA Wei-chen, ZHOU Hao, CEN Ke-fa. Uniform distribution characteristics of reducing agent on hybrid SNCR-SCR process[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1255-1261.
[10] HU You rui, LIU Yan, WANG Yang, LIU Jian zhong, ZHOU Jun hu, HU Wei, LI Hong wei. Numerical simulation and orthogonal optimization design for high humidity hydrogen oxygen injector[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2403-2409.
[11] ZHANG Yi-ping, LI Liang, WANG Si-zhao. Experimental study on pore fluid for forming transparent soil[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1828-1834.
[12] DING Jing, SHU Xin, ZHAO Qing-liang. Influencing factors on ammonia removal by electrochemical oxidation treatment[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 889-894.