Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2336-2343    DOI: 10.3785/j.issn.1008-973X.2020.12.008
    
Effect of gas composition on discharge characteristics of electrostatic precipitator
Hao-lin WANG(),Zhong-yang LUO*(),Ming-chun HE,Dan SHEN
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1554KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The volt ampere characteristics of electrostatic precipitator under different gas composition were studied by experiments and numerical simulation, and a corona discharge model of simulated flue gas was established by COMSOL software in order to analyze the influence mechanism of concentration changes of O2, H2O and CO2 in flue gas on the negative corona discharge characteristics. Results show that when the CO2 concentration increases and the O2 concentration decreases, the corona onset voltage increases, the current is negatively correlated with the CO2 concentration at low voltage, and positively at high voltage. When the relative humidity increases, the corona onset voltage decreases. The current is positively correlated with the relative humidity at low voltage and negatively at high voltage. With the increasing of CO2 concentration and the decreasing of O2 concentration, the number of electrons increases. When the relative humidity increases, the number of anion clusters increases and the mobility of ions decreases. The increasing of CO2 concentration and relative humidity contributes to the increasing of space charge density, which is conducive to enhancing the diffusion charge and the removal of fine particles.



Key wordselectrostatic precipitator      ion products      current      space charge density      particle charging     
Received: 07 November 2019      Published: 31 December 2020
CLC:  TK 284  
  X 513  
Corresponding Authors: Zhong-yang LUO     E-mail: 21727098@zju.edu.cn;zyluo@zju.edu.cn
Cite this article:

Hao-lin WANG,Zhong-yang LUO,Ming-chun HE,Dan SHEN. Effect of gas composition on discharge characteristics of electrostatic precipitator. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2336-2343.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.008     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2336


烟气成分对静电除尘器放电特性的影响

为了研究烟气中O2、H2O、CO2体积分数变化对负电晕放电特性的影响机理,采用实验和数值模拟方法分析静电除尘器在不同气体成分下的伏安特性,应用COMSOL软件建立模拟烟气的电晕放电模型. 研究结果表明:当CO2体积分数增大,O2体积分数降低时,起晕电压增大,电流在低电压时与CO2体积分数负相关,在高电压时正相关;当相对湿度增大时,起晕电压降低,电流在低电压时与相对湿度正相关,在高电压时负相关;当CO2体积分数增大,O2体积分数降低时,电子数量增大;当相对湿度增大时,空间中的负离子团数量增大,离子迁移率降低. CO2体积分数和相对湿度增大,空间电荷密度增大,有利于增大扩散荷电量,从而提高细微颗粒物的脱除效率.


关键词: 静电除尘器,  离子产物,  电流,  空间电荷密度,  颗粒荷电 
Fig.1 Experimental system diagram for volt ampere characteristics of simulated flue gas
Fig.2 Model of wire-plate electrostatic precipitator
Fig.3 Volt ampere characteristic curves under different CO2-O2 volume fractions
Fig.4 Net ionization coefficient-reduced electric intensity curves under different CO2-O2 volume fractions
Fig.5 Volt ampere characteristic curves under different relative humidities
Fig.6 Net ionization coefficient-reduced electric intensity curves under different relative humidities
Fig.7 Potential distribution graph of negative corona discharge
Fig.8 Space charge density distribution graph of negative corona discharge
Fig.9 Effect of CO2-O2 volume fraction on electron density on Y-axis of model
Fig.10 Effect of O2/CO2 volume fraction on number density of CO3 and CO4 on Y-axis of model
Fig.11 Effect of O2/CO2 volume fraction on number density of CO3(H2O) and CO4(H2O) on Y-axis of model
Fig.12 Effect of relative humidity on number density of hydrated ions on Y-axis of model
Fig.13 Effect of different gas composition on space charge density on Y-axis of model
[1]   国家统计局. 中国统计年鉴2019[M]. 北京: 中国统计出版社, 2018: 279-280.
[2]   FERNANDEZ A, DAVIS S B, WENDT J O L, et al Public health: particulate emission from biomass combustion[J]. Nature, 2001, 409: 998
[3]   LI R, LEUNG G C K Coal consumption and economic growth in China[J]. Energy Policy, 2012, 40 (1): 438- 443
[4]   JAWOREK A, KRUPA A, CZECH T Modern electrostatic devices and methods for exhaust gas cleaning: a brief review[J]. Journal of Electrostatics, 2007, 65 (3): 133- 155
doi: 10.1016/j.elstat.2006.07.012
[5]   CHANG J S Next generation integrated electrostatic gas cleaning systems[J]. Journal of Electrostatics, 2003, 57 (3-4): 273- 291
doi: 10.1016/S0304-3886(02)00167-5
[6]   MIZUNO A Electrostatic precipitation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7 (5): 615- 624
doi: 10.1109/94.879357
[7]   PAUTHENIER M M The charge on a spherical particle in an ionized field[J]. Journal de Physique Radium, 1932, 7: 590- 613
[8]   FUCHS N A, PETRIANOFF I, ROTZEIG B On the rate of charging of droplets by an ionic current[J]. Transactions of the Faraday Society, 1936, 32 (2): 1131- 1138
[9]   HEWITT G W The charging of small particles for electrostatic precipitation[J]. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 1957, 76 (3): 300- 306
doi: 10.1109/TCE.1957.6372672
[10]   ABDEL-SALAM M Influence of humidity on charge density and electric field in electrostatic precipitators[J]. Journal of Physics D (Applied Physics), 1992, 25 (9): 1318- 1322
doi: 10.1088/0022-3727/25/9/006
[11]   FOUAD L, ELHAZEK S Effect of humidity on positive corona discharge in a three electrode system[J]. Journal of Electrostatics, 1995, 35 (1): 21- 30
doi: 10.1016/0304-3886(95)00009-Y
[12]   BIAN X, MENG X, WANG L, et al Negative corona inception voltages in rod-plane gaps at various air pressures and humidities[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18 (2): 613- 619
doi: 10.1109/TDEI.2011.5739468
[13]   NOURI H, ZOUZOU N, MOREAU E, et al Effect of relative humidity on current?voltage characteristics of an electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70 (1): 20- 24
doi: 10.1016/j.elstat.2011.08.011
[14]   WANG X, YOU C Effect of humidity on negative corona discharge of electrostatic precipitators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20 (5): 1720- 1726
doi: 10.1109/TDEI.2013.6633702
[15]   YAWOOTTI A, INTRA P, TIPPAYAWONG N, et al An experimental study of relative humidity and air flow effects on positive and negative corona discharges in a corona-needle charger[J]. Journal of Electrostatics, 2015, 77 (5): 116- 122
[16]   WU H, PAN D, JIANG Y, et al Improving the removal of fine particles from desulfurized flue gas by adding humid air[J]. Fuel, 2016, 184 (22): 153- 161
[17]   HAN B, KIM H J, KIM Y J Fine particle collection of an electrostatic precipitator in CO2-rich gas conditions for oxy-fuel combustion [J]. Science of the Total Environment, 2010, 408 (21): 5158- 5164
doi: 10.1016/j.scitotenv.2010.07.028
[18]   SURIYAWONG A, HOGAN C J, JIANG J, et al Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2–CO2 coal combustion [J]. Fuel, 2008, 87 (6): 673- 682
doi: 10.1016/j.fuel.2007.07.024
[19]   MIKOVINY T, KOCAN M, MATEJCIK S, et al Experimental study of negative corona discharge in pure carbon dioxide and its mixtures with oxygen[J]. Journal of Physics D: Applied Physics, 2004, 37 (1): 64- 73
doi: 10.1088/0022-3727/37/1/011
[20]   HENSEL K, HAYASHI N, YAMABE C, et al Positive DC corona discharge in N2?NO?CO2?O2 mixtures [J]. Japanese Journal of Applied Physics, 2002, 41 (1R): 336
[21]   H?FT H, KETTLITZ M, HODER T, et al The influence of O2 content on the spatio-temporal development of pulsed driven dielectric barrier discharges in O2/N2 gas mixtures [J]. Journal of Physics D: Applied Physics, 2013, 46 (9): 95202
doi: 10.1088/0022-3727/46/9/095202
[22]   LIU X Y, PEI X K, OSTRIKOV K, et al The production mechanisms of OH radicals in a pulsed direct current plasma jet[J]. Physics of Plasmas, 2014, 21 (9): 093513
doi: 10.1063/1.4895496
[23]   SIECK L W, HERON J T, GREEN D S Chemical kinetics database and predictive schemes for humid air plasma chemistry. part I: positive ion?molecule reactions[J]. Plasma Chemistry and Plasma Processing, 2000, 20 (2): 235- 258
[24]   MURAKAMI T, NIEMI K, GANS T, et al Chemical kinetics and reactive species in atmospheric pressure helium?oxygen plasmas with humid-air impurities[J]. Plasma Sources Science and Technology, 2012, 22 (1): 015003
doi: 10.1088/0963-0252/22/1/015003
[25]   CENIAN A, CHERNUKHO A, BORODIN V Modeling of plasma-chemical reactions in gas mixture of CO2 lasers I. gas decomposition in pure CO2 glow discharge [J]. Contributions to Plasma Physics, 2010, 34 (1): 25- 37
[26]   MASON E A, MCDANIEL E W Transport properties of ions in gases[J]. NASA STI/Recon Technical Report A, 1988, 89 (1): 219- 249
[27]   LIU Y, HUANG S, ZHU L Influence of humidity and air pressure on the ion mobility based on drift tube method[J]. CSEE Journal of Power and Energy Systems, 2015, 1 (3): 37- 41
doi: 10.17775/CSEEJPES.2015.00033
[28]   GUNZER F, ZIMMERMANN S Investigation of ion cluster formation in a pulsed ion mobility spectrometer operating in the negative mode[J]. Sensors and Actuators B: Chemical, 2014, 204 (15): 467- 473
[29]   骆仲泱, 江建平, 赵磊, 等 不同电场中细颗粒物的荷电特性研究[J]. 中国电机工程学报, 2014, 34 (23): 3959- 3969
LUO Zhong-yang, JIANG Jian-ping, ZHAO Lei, et al Research on the charging of fine particulate in different electric fields[J]. Proceedings of the CSEE, 2014, 34 (23): 3959- 3969
[1] Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.
[2] Tong-you CHEN,Jia-qiang YANG,Shi-da ZHENG,De-zhi MENG,Min KANG. IF starting smooth switching method of sensorless permanent magnet fan based on cosine function[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1572-1577.
[3] Yang-jian LI,Wei HE,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Active damping control for drive train of horizontal-axis tidal current turbines[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1355-1361.
[4] Yan-nan ZHANG,Xiao-hong HUANG,Yan MA,Qun CONG. Method with recording text classification based on deep learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1264-1271.
[5] Zheng-rui TAO,Jia-qiang DANG,Jing-yang XU,Qing-long AN,Ming CHEN,Li WANG,Fei REN. High-precision calibration methods of thickness measurement for insulation coation on curved surface based on eddy current[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1218-1227.
[6] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[7] Jiang-xing LONG,Wei-liang JIN,Jun ZHANG,Jiang-hong MAO,Lei CUI. Experimental study on fatigue properties of steel bars after electrochemical repair[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 64-72.
[8] Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.
[9] Jing-de XIA,Jin-yu LUO,shu-ping GAO,zai-bin JIAO,wen-quan SHAO,Xin-bo HUANG. Improved scheme for differential protection of UHVDC transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 579-588.
[10] Yan-ling TANG,Lu-di XU,Zhi-guo HE,Bao-de CHEN,Jie XU,Li LI. Numerical simulation of three-dimensional characteristics of tidal current and residual current in Yangshan Harbor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 315-324.
[11] Jing-chang WANG,Ling CHEN,Shan-shan YU,Chen-shu JIANG,Yong WU. Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2357-2364.
[12] BAI Qing-cheng, LIU Jian-zhong, SONG Zi-yang, CHENG Jun. Effect of waste water on hydrogen production from coal slurry electrolysis[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 180-185.
[13] LIU Guo-liang, LI Xin, WU Liang, LI Zhen-yu, CHEN Guo-zhu. Analysis and design-optimization of LCC resonant converter operating under wide range input and output voltage[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1762-1770.
[14] FU Shi-hang, HOU Qing-hui, YUE Ao-fei, SHI Jian-jiang. Dual active bridge DC-DC converter based on second dual-phase-shifting control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1167-1176.
[15] LIU Jia-jia, CEN Jian-meng, FANG Meng-xiang, CHEN Quan-lin. Direct Current discharge characteristics under different gas compositions at high temperature[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 971-979.