Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (12): 2357-2364    DOI: 10.3785/j.issn.1008-973X.2019.12.013
Computer Science and Artificial Intelligence     
Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit
Jing-chang WANG1(),Ling CHEN2,*(),Shan-shan YU2,Chen-shu JIANG2,Yong WU1
1. Zhejiang Hongcheng Computer Systems Company Limited, Hangzhou 310009, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(719KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The proposed prediction model adopted a time series segmentation strategy. Firstly, each time series was split into segments and convolved separately by using convolutional neural network (CNN). Then, gated recurrent unit (GRU) was utilized to mine the time series information. Finally, relevant context information (weather conditions and holidays) of the prediction time was added to predict short-term tourist number. Experiments on the gate dataset and vehicle monitoring dataset of a scenic area show that multi-factor perceived short-term tourist number prediction model based on GRU considers multi context factors and the differences between multi time series. The root mean square error (RMSE) and mean absolute percent error (MAPE) of the proposed model are smaller than that of the traditional models, which reveals that the model can effectively reduce short-term tourist number prediction error.



Key wordsshort-term tourist number prediction      multi-factor perception      gated recurrent unit (GRU)      convolutional neural network (CNN)      context information     
Received: 25 October 2018      Published: 17 December 2019
CLC:  TP 391  
Corresponding Authors: Ling CHEN     E-mail: wangjc@zjhcsoft.com;lingchen@cs.zju.edu.cn
Cite this article:

Jing-chang WANG,Ling CHEN,Shan-shan YU,Chen-shu JIANG,Yong WU. Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2357-2364.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.12.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I12/2357


基于门控循环单元的多因素感知短期游客人数预测模型

提出的预测模型采取分时序分段策略,使用卷积神经网络(CNN)提取景区多因素时序数据的特征,并对不同因素的时序数据赋予不同的权重,将结果送入门控循环单元(GRU)以挖掘其中的时序信息,结合预测时刻的情境信息(天气状况和节假日)预测短期景区内游客人数. 在某景区的闸机数据集和监控点车辆数据集上的实验结果表明:基于门控循环单元的多因素感知短期游客人数预测模型可以充分考虑多情境因素并对不同因素时序数据赋予不同的权重,均方根误差(RMSE)和平均绝对百分比误差(MAPE)均小于传统模型,能够有效降低短期游客人数预测误差。


关键词: 短期游客人数预测,  多因素感知,  门控循环单元(GRU),  卷积神经网络(CNN),  情境信息 
Fig.1 Architecture of multi-factor perceived short-term tourist number prediction model based on gated recurrent unit (MFPPM)
数据集 时间序列 参数符号
景区闸机
数据
景区内游客人数 xtot
进入景区游客人数 xin
离开景区游客人数 xout
监控点车辆
数据
本地客车进入数 xttbin
本地客车离开数 xttbout
本地轿车进入数 xttcin
本地轿车离开数 xttcout
外地本省客车进入数 xtfbin
外地本省客车离开数 xtfbout
外地本省轿车进入数 xtfcin
外地本省轿车离开数 xtfcout
外省客车进入数 xffbin
外省客车离开数 xffbout
外省轿车进入数 xffcin
外省轿车离开数 xffcout
Tab.1 Time series obtained from gate dataset and vehicle monitoring dataset of scenic area
Fig.2 CNN structure for time series segmentation strategy
Fig.3 Diagram of gated recurrent unit (GRU)
网络层 超参
卷积层 Filters=3;Kernel_size=5;Strides=1;Activation=Relu
池化层 第1个池化层:Pool_size=3;第2个池化层:Pool_size=2
GRU Units=d
全连接层 Units=1;Activation=LeakyRelu(alpha=0.3)
Tab.2 Hype-rparameters setting of MFPPM
评估指标 RMSE MAPE
m=420 193.63 150.16
m=480 190.98 121.08
m=540 193.92 123.65
m=600 197.67 132.82
Tab.3 Effect of parameter m on results in MFPPM
评估指标 RMSE MAPE 评估指标 RMSE MAPE
d=50 195.73 136.54 d=70 190.98 121.08
d=60 192.93 123.56 d=80 197.35 129.70
Tab.4 Effect of output dimension on results in MFAPM
模型 RMSE MAPE
MFPPM-W/O-Weather 193.02 129. 96
MFPPM-W/O-Holiday 203.04 140.28
MFPPM-W/O-Vehicle 217.04 159.77
MFPPM 190.98 121.08
Tab.5 Effect of different context factors on prediction results of short-term tourist numbers
模型 RMSE MAPE
SVR-multi 272.63 147.19
GRU-multi 268.76 141.16
CNNGRU-multi 250.49 139.02
MFPPM-only 225.05 130.67
MFPPM 190.98 121.08
Tab.6 Comparison of prediction effects by different short-term tourist number prediction models
[1]   CHU F L Forecasting tourism demand with ARMA-based methods[J]. Tourism Management, 2009, 30 (5): 740- 751
doi: 10.1016/j.tourman.2008.10.016
[2]   GUSTAVSSON P, NORDSTROM J The impact of seasonal unit roots and vector ARMA modelling on forecasting monthly tourism flows[J]. Tourism Economics, 2001, 7 (2): 117- 133
doi: 10.5367/000000001101297766
[3]   BOX G E P, PIERCE D A Distribution of residual autocorrelations in autoregressive-integrated moving average time series models[J]. Journal of the American Statistical Association, 1970, 65 (332): 1509- 1526
doi: 10.1080/01621459.1970.10481180
[4]   AHMED M S, COOK A R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques [M]. [S. l.]: Transportation Research Board, 1979.
[5]   LIM C, MCALEER M Time series forecasts of international travel demand for Australia[J]. Tourism Management, 2002, 23 (4): 389- 396
doi: 10.1016/S0261-5177(01)00098-X
[6]   PAI P F, HONG W C An improved neural network model in forecasting arrivals[J]. Annals of Tourism Research, 2005, 32 (4): 1138- 1141
doi: 10.1016/j.annals.2005.01.002
[7]   JANACEK G Time series analysis forecasting and control[J]. Journal of Time Series Analysis, 2010, 31 (4): 303
[8]   WU C H, HO J M, LEE D T Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5 (4): 276- 281
doi: 10.1109/TITS.2004.837813
[9]   HONG W C Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm[J]. Neurocomputing, 2011, 74 (12-13): 2096- 2107
doi: 10.1016/j.neucom.2010.12.032
[10]   CHEN K Y, WANG C H Using genetic algorithms to optimize support vector regression in tourism demand forecasting[J]. Journal of Outdoor Recreat Study, 2005, 18 (1): 47- 72
[11]   PAI P F, HONG W C, CHANG P T, et al The application of support vector machines to forecast tourist arrivals in Barbados: an empirical study[J]. International Journal of Management, 2006, 23 (2): 375
[12]   CHEN K Y, WANG C H Support vector regression with genetic algorithms in forecasting tourism demand[J]. Tourism Management, 2007, 28 (1): 215- 226
doi: 10.1016/j.tourman.2005.12.018
[13]   CHEN K Y Combining linear and nonlinear model in forecasting tourism demand[J]. Expert Systems with Applications, 2011, 38 (8): 10368- 10376
doi: 10.1016/j.eswa.2011.02.049
[14]   CHEN R, LIANG C Y, HONG W C, et al Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm[J]. Applied Soft Computing, 2015, 26: 435- 443
doi: 10.1016/j.asoc.2014.10.022
[15]   HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
[16]   CHO K, MERRIENBOER B V, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [J]. arXiv preprint. arXiv: 1406.1078, 2014.
[17]   LI Y F, CAO H. Prediction for tourism flow based on LSTM neural network [C] // International Conference on Identification, Information and Knowledge in the Internet of Things. Qufu: ELSEVIER, 2017: 277-287.
[18]   FU R, ZHANG Z, LI L. Using LSTM and GRU neural network methods for traffic flow prediction [C] // 2016 31st Youth Academic Annual Conference of Chinese Association of Automation. Wuhan: IEEE, 2016: 324-328.
[19]   GUO J, WANG Z, CHEN H. On-line multi-step prediction of short term traffic flow based on GRU neural network [C] // Proceedings of the 2nd International Conference on Intelligent Information Processing. Bangkok: ACM, 2017: 11.
[20]   王文庆, 郭恒, 范启富. 基于CNN与GRU的航空发动机剩余寿命预测 [C] // 第37届中国控制会议. 武汉: 中国学术期刊电子出版社, 2018: 546-551.
WANG Wen-qing, GUO Heng, FAN Qi-fu. Predict remaining useful life of aerospace engine based on CNN and GRU [C] // Proceedings of the 37th Chinese Control Conference. Wuhan: China Academic Journal Electronic Publishing House, 2018: 546-551.
[1] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[2] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[3] Chen-bin ZHENG,Yong ZHANG,Hang HU,Ying-rui WU,Guang-jing HUANG. Object detection enhanced context model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 529-539.
[4] Zi-yu JIA,You-fang LIN,Hong-jun ZHANG,Jing WANG. Sleep stage classification model based ondeep convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1899-1905.
[5] Hong-guang LI,Ying GUO,Ping SUI,Zi-sen QI. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1945-1954.
[6] Gang YE,Yi-bo LI,Zhu-xi MA,Jie CHENG. End-to-end aluminum strip surface defects detection and recognition method based on ViBe[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1906-1914.
[7] Yan LV,Meng ZHANG,Wu-hao JIANG,Yi-hua NI,Xiao-hong QIAN. Design of elderly fall detection system using CNN[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1130-1138.
[8] Gui-ran HE,Qi LI,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN. Dual-focal camera continuous digital zoom based onCNN and feature extraction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1182-1189.
[9] Yue DONG,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN,Qi LI. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 373-381.
[10] Hao LI,Wen-jie ZHAO,Bo HAN. Convolutional neural network acceleration algorithm based on filters pruning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1994-2002.
[11] TANG You bao, BU Wei, WU Xiang qian. Natural scene text detection based on multi level MSER[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1134-1140.