Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1945-1954    DOI: 10.3785/j.issn.1008-973X.2020.10.011
    
Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics
Hong-guang LI(),Ying GUO*(),Ping SUI,Zi-sen QI
Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
Download: HTML     PDF(1630KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A frequency hopping signal modulation recognition system based on convolutional neural network (CNN) was proposed aiming at the problem of insufficient artificial feature representation ability and difficulty in extraction. The modulation recognition problem was transformed into an image recognition problem by learning the time-frequency characteristics of the frequency hopping signal. The two-dimensional time-frequency diagram was obtained by using time-frequency transform, and the adaptive Wiener filter was used to remove the background noise of the time-frequency diagram to improve system noise immunity. The connected-domain detection algorithm and the bilinear interpolation algorithm were applied to extract the time-frequency diagram of each hop and reset the size. The processed time-frequency map was input into the designed 11-layer convolutional neural network for training and learning. The classification and recognition of frequency hopping modulation were realized by adding a Softmax classifier in the output layer. The simulation results showed that the average recognition rate of the frequency hopping signals BPSK, QPSK, 8PSK, SDPSK, QASK, 16QAM, 32QAM and GMSK was 92.54% when the signal-to-noise ratio was –4 dB.



Key wordsfrequency hopping signal      modulation recognition      convolutional neural network (CNN)      time-frequency transform      convolution layer     
Received: 23 September 2019      Published: 28 October 2020
CLC:  TP 391  
Corresponding Authors: Ying GUO     E-mail: toumingwings@163.com;kdydsp@163.com
Cite this article:

Hong-guang LI,Ying GUO,Ping SUI,Zi-sen QI. Frequency hopping modulation recognition of convolutional neural network based on time-frequency characteristics. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1945-1954.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1945


基于时频特征的卷积神经网络跳频调制识别

针对人工设计特征表征能力不足,提取难度大的问题,提出基于卷积神经网络(CNN)的跳频信号调制方式识别系统. 该系统通过训练学习跳频信号时频图特征,将调制方式识别问题转化为图像识别问题. 采用组合时频变换方法对跳频信号进行时频变换得到二维时频图;经过自适应维纳滤波算法滤除背景噪声,提高系统抗噪性;采用连通域检测和双线性插值算法提取跳频信号每跳时频图,对时频图大小进行重置调整;将已处理的时频图输入到设计的11层卷积神经网络中进行训练学习,通过在输出层增加Softmax分类器,实现跳频调制方式分类识别. 仿真结果表明,该系统在信噪比为–4 dB条件下,对跳频信号BPSK、QPSK、8PSK、SDPSK、QASK、16QAM、32QAM和GMSK共8种调制方式的平均识别率达到92.54%.


关键词: 跳频信号,  调制识别,  卷积神经网络(CNN),  时频变换,  卷积层 
Fig.1 Identification process of FH modulation based on CNN
Fig.2 Time-frequency diagrams of FH signals based on four time-frequency transform methods
Fig.3 
Fig.3 Single-hop time-frequency feature map of five frequency hopping signals
Fig.4 CNN training recognition basic structure
Fig.5 Four typical CNN modulation recognition structures
Fig.6 Training results of modulation recognition rate and loss value of four CNN structures
CNN结构 训练集 验证集 测试集
Rpsr / % Lloss Rpsr / % Lloss Rpsr / % Lloss
CNN_1 100 0.0076 80.05 0.0892 79.59 0.0928
CNN_2 100 0.0045 81.92 0.0812 81.21 0.0873
CNN_3 100 0.0027 85.06 0.0553 84.83 0.0576
CNN_4 100 0.0032 84.69 0.0574 84.14 0.0603
Tab.1 Four CNN modulation recognition training results under different sample sets
${K_{\rm l}}$ r ${R_{\rm{c}}}$/kB $V$/(幅·s?1 ${R_{{\rm{psr}}}}$/%
$7 \times 7$ 2 2269.476 2.92 91.32
$5 \times 5$ 2 1585.653 5.24 87.39
$3 \times 3$ 2 357.248 8.23 83.46
$3 \times 3$ 4 357.248 8.23 86.75
$3 \times 3$ 6 357.248 8.23 90.14
$3 \times 3$ 8 357.248 8.23 91.18
Tab.2 Training results of CNN modulation recognition based on six parameter combinations
Fig.7 Identification structure of FH modulation based on CNN
p/% 训练集 验证集 测试集
Rpsr / % Lloss Rpsr / % Lloss Rpsr / % Lloss
0 100 0.006 2 91.88 0.085 3 90.05 0.087 4
10 100 0.013 7 87.92 0.184 7 87.42 0.188 5
20 100 0.006 9 89.24 0.093 8 88.21 0.100 4
30 100 0.007 5 88.13 0.096 6 87.98 0.099 5
40 99.93 0.062 1 90.75 0.088 2 90.62 0.110 6
50 100 0.003 8 92.81 0.087 1 92.63 0.095 4
60 100 0.004 3 89.46 0.109 2 88.34 0.101 3
70 99.96 0.076 7 88.25 0.114 7 87.83 0.132 8
80 100 0.006 6 91.33 0.087 1 91.35 0.099 6
90 100 0.009 2 89.75 0.093 6 89.43 0.101 2
Tab.3 CNN modulation recognition training results with different Dropout ratios
Fig.8 FH modulation recognition rate under different SNR
输出 Rpsr /%
输入BPSK 输入QPSK 输入SDPSK 输入8PSK 输入QASK 输入16QAM 输入32QAM 输入GMSK
BPSK 89.2 1.3 6.8 1.8 0 1.6 0 1.5
QPSK 2.1 94.2 1.3 3.1 0.5 0 1.8 1.3
SDPSK 8.1 1.4 91.1 1.7 0 0 0 2.1
8PSK 0.6 2.3 0.8 92.8 0 0 0 0.5
QASK 0 0.8 0 0.6 94.6 2.5 1.4 0
16QAM 0 0 0 0 3.2 91.7 4.7 0
32QAM 0 0 0 0 1.7 4.2 92.1 0
GMSK 0 0 0 0 0 0 0 94.6
Tab.4 Eight kinds of modulated FH signal recognition results when SNR is −4 dB
[1]   HAN L B, GAO F F, LI Z, et al Low complexity automatic modulation classification based on order-statistics[J]. IEEE Transactions on Wireless Communications, 2017, 16 (1): 400- 411
doi: 10.1109/TWC.2016.2623716
[2]   DOBTE O A, ONER M, RAJAN S, et al. Cyclostationarity-based robust algorithms for QAM signal identification[J]. IEEE Communications Letters, 2012, 16 (1): 12- 15
doi: 10.1109/LCOMM.2011.112311.112006
[3]   SU W Feature space analysis of modulation classification using very high-order statistics[J]. IEEE Communications Letters, 2013, 17 (9): 1688- 1691
doi: 10.1109/LCOMM.2013.080613.130070
[4]   吴斌, 袁亚博, 汪勃 基于记忆因子的连续相位调制信号最大似然调制识别[J]. 电子与信息学报, 2016, 38 (10): 2546- 2552
WU Bin, YUAN Ya-bo, WANG Bo Maximum likelihood modulation recognition for continuous phase modulation signals using memory factor[J]. Journal of Electronics and Information Technology, 2016, 38 (10): 2546- 2552
[5]   WANG F G, DOBRE O A, CHAN C, et al. Novel fold-based kolmogorov-smirnov modulation classifier[J]. IEEE Signal Processing Letters, 2016, 23 (7): 1003- 1007
doi: 10.1109/LSP.2016.2572666
[6]   赵雄文, 郭春霞, 李景春 基于高阶累积量和循环谱的信号调制方式混合识别算法[J]. 电子与信息学报, 2016, 38 (3): 674- 680
ZHAO Xiong-wen, GUO Chun-xia, LI Jing-chun Mixed recognition algorithm for signal modulation schemes by high-order cumulants and cyclic spectrum[J]. Journal of Electronics and Information Technology, 2016, 38 (3): 674- 680
[7]   XIE L J, WAN Q Cyclic feature based modulation recognition using compressive sensing[J]. IEEE Wireless Communications Letters, 2017, 6 (3): 402- 405
doi: 10.1109/LWC.2017.2697853
[8]   ZIEGLER J L, ARN R T, CHAMBERS W, et al. Modulation recognition with GNU radio, keras, and hackrf [C]// IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE, 2017: 1-3.
[9]   LI X Q, HUANG Z T, WANG F H, et al Towards convolutional neural networks on pulse repetition interval modulation recognition[J]. IEEE Communications Letters, 2018, 22 (11): 2286- 2289
doi: 10.1109/LCOMM.2018.2864725
[10]   QU Z Y, MAO X J, DENG Z A Radar signal intra-pulse modulation recognition based on convolutional neural network[J]. IEEE Access, 2018, 6 (1): 43874- 43884
[11]   RAJENDRAN S, MEERT W, GIUSTINIANO D, et al Deep learning models for wireless signal classification with distributed low-cost spectrum sensors[J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4 (3): 433- 445
doi: 10.1109/TCCN.2018.2835460
[12]   ALI A, FAN Yang-yu K-sparse autoencoder based automatic modulation classification with low complexity[J]. IEEE Communications Letters, 2017, 21 (10): 2162- 2165
doi: 10.1109/LCOMM.2017.2717821
[13]   LI R D, LI L Z, YANG S Y, et al Robust automated VHF modulation recognition based on deep convolutional neural networks[J]. IEEE Communications Letters, 2018, 22 (5): 946- 949
doi: 10.1109/LCOMM.2018.2809732
[14]   郭立民, 寇韵涵, 陈涛 基于栈式稀疏自编码器的低信噪比下低截获概率雷达信号调制类型识别[J]. 电子与信息学报, 2018, 40 (4): 875- 881
GUO Li-min, KOU Yun-han, CHEN Tao Low probability of intercept radar signal recognition based on stacked sparse auto-encoder[J]. Journal of Electronics and Information Technology, 2018, 40 (4): 875- 881
[15]   KINGMA D, BA J. Adam: a method for stochastic optimization [C]// The 3rd International Conference on Learning Representations. San Diego: IEEE, 2015: 1-15.
[16]   张坤峰, 郭英, 齐子森, 等 基于稀疏贝叶斯重构的多跳频信号参数估计[J]. 华中科技大学学报: 自然科学版, 2017, 45 (1): 97- 102
ZHANG Kun-feng, GUO Ying, QI Zi-sen, et al Parameter estimation of multi-hop frequency signals based on sparse Bayesian reconstruction[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2017, 45 (1): 97- 102
[17]   ZHANG M, LIU L T, DIAO M LPI radar waveform recognition based on time-frequency distribution[J]. Sensors, 2016, 16 (10): 1682- 1702
doi: 10.3390/s16101682
[18]   STANKOVIC S, DJUROVIC I, PITAS I Watermarking in the space/spatial-frequency domain using two-dimensional Radon-Wigner distribution[J]. IEEE Transactions on Image Processing, 2001, 10 (4): 650- 658
doi: 10.1109/83.913599
[19]   DENG L, YU D Deep learning: methods and applications[J]. Foundations and Trends in Signal Processing, 2014, 7 (3): 197- 387
[20]   HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification [C]// 2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1026-1034.
[21]   ZHANG M, DIAO M, GUO L M Convolutional neural networks for automatic cognitive radio waveform recognition[J]. IEEE Access, 2017, 5 (1): 11074- 11082
[22]   HAO W, BIE R, GUO J, et al Optimized CNN based image recognition through target region selection[J]. Optik-International Journal for Light and Electron Optics, 2018, 156 (1): 772- 777
[23]   FU L, FENG Y, ELKAMIL T, et al Image recognition method of multi-cluster kiwifruit in field based on convolutional neural networks[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (1): 205- 211
[1] Qiao-hong CHEN,YI CHEN,Wen-shu Li,Yu-bo JIA. Clothing image classification based on multi-scale SE-Xception[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1727-1735.
[2] Ping YANG,Dan WANG,Zi-jian KAGN,Tong LI,Li-hua FU,Yue-ren YU. Prediction model of paroxysmal atrial fibrillation based on pattern recognition and ensemble CNN-LSTM[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1039-1048.
[3] Gang YE,Yi-bo LI,Zhu-xi MA,Jie CHENG. End-to-end aluminum strip surface defects detection and recognition method based on ViBe[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1906-1914.
[4] Zi-yu JIA,You-fang LIN,Hong-jun ZHANG,Jing WANG. Sleep stage classification model based ondeep convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1899-1905.
[5] Yan LV,Meng ZHANG,Wu-hao JIANG,Yi-hua NI,Xiao-hong QIAN. Design of elderly fall detection system using CNN[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1130-1138.
[6] Gui-ran HE,Qi LI,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN. Dual-focal camera continuous digital zoom based onCNN and feature extraction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1182-1189.
[7] Yue DONG,Hua-jun FENG,Zhi-hai XU,Yue-ting CHEN,Qi LI. Attention Res-Unet: an efficient shadow detection algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 373-381.
[8] Jing-chang WANG,Ling CHEN,Shan-shan YU,Chen-shu JIANG,Yong WU. Multi-factor perceived short-term tourist number prediction model based on gated recurrent unit[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2357-2364.
[9] Hao LI,Wen-jie ZHAO,Bo HAN. Convolutional neural network acceleration algorithm based on filters pruning[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1994-2002.
[10] TANG You bao, BU Wei, WU Xiang qian. Natural scene text detection based on multi level MSER[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1134-1140.