|
|
Camera active pose cooperation for obtaining face frontal images |
Wen-tao WANG( ),Jia-tian LI*( ),Hua-jing WU,Peng GAO,Xiao-hui A,Zhi-hao ZHU |
Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China |
|
|
Abstract A face-to-camera active pose cooperation method was proposed in order to reduce the impact of face rotation in object space by actively adjusting the position and attitude of the camera. Environment of pose cooperation was constructed by using an industrial camera and a synchronous belt-like motion controller. The angle of a moving face pose and the relative position between the camera and the face were solved by a single image space resection. The mapping relationship between the coordinate systems of the face, the camera and the motion controller was calculated. The camera motion was controlled by the camera's coordinated pose control calculated from the relative position of the camera and the face attitude angle at the adjacent sampling time, and the face frontal image was acquired actively and real-time. The experimental results showed that the camera point position error on the motion axis was less than 10 mm, and the extracted frontal image improved the accuracy and robustness of face correction.
|
Received: 28 August 2019
Published: 28 October 2020
|
|
Corresponding Authors:
Jia-tian LI
E-mail: 413274795@qq.com;ljtwcx@163.com
|
摄像机主动位姿协同的人脸正视图像获取方法
为了主动调整摄像机的位置姿态以在物方空间降低由人脸旋转带来的影响,提出人脸-摄像机主动位姿协同方法. 利用工业摄像机与同步带类运动控制器搭建位姿协同环境,根据单像空间后方交会方法求解运动人脸姿态角和相对位置,计算人脸、摄像机和运动控制器各坐标系之间的映射关系,摄像机运动由相邻采样时刻摄像机相对位置和人脸姿态角计算得出的摄像机协同位姿控制,主动、实时地获取人脸正视图像. 实验表明,运动轴上的摄像机点位误差小于10 mm,取得的人脸正视图像提高了人脸纠正的精准度与鲁棒性.
关键词:
人脸纠正,
人脸正视图像,
摄影测量,
人脸姿态角,
位姿协同,
运动控制器
|
|
[1] |
CAO X, WEI Y, WEN F, et al Face alignment by explicit shape regression[J]. International Journal of Computer Vision, 2014, 107 (2): 177- 190
doi: 10.1007/s11263-013-0667-3
|
|
|
[2] |
ZHANG K, ZHANG Z, LI Z, et al Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503
doi: 10.1109/LSP.2016.2603342
|
|
|
[3] |
CHEN D, REN S, WEI Y, et al. Joint cascade face detection and alignment [C] // European Conference on Computer Vision. Switzerland: Springer, 2014: 109-122.
|
|
|
[4] |
LIAO S, JAIN A K, LI S Z Partial face recognition: alignment-free approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (5): 1193- 1205
doi: 10.1109/TPAMI.2012.191
|
|
|
[5] |
MCNEILL G, VIJAYAKUMAR S. Hierarchical procrustes matching for shape retrieval [C] // 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 885-894.
|
|
|
[6] |
LIN C, ZHANG T, LV C, et al. Improved explicit shape regression face alignment algorithm[C] // 2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 1166-1169.
|
|
|
[7] |
DANTONE M, GALL J, FANELLI G, et al. Realtime facial feature detection using conditional regression forests [C] // IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2578-2585.
|
|
|
[8] |
LI Q, SUN Z, HE R. Fast multi-view face alignment via multi-task auto-encoders [C] // 2017 IEEE International Joint Conference on Biometrics. Denver: IEEE, 2017: 538-545.
|
|
|
[9] |
TZIMIROPOULOS G. Project-out cascaded regression with an application to face alignment [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3659-3667.
|
|
|
[10] |
XIONG X, TORRE F D L. Supervised descent method and its applications to face alignment [C] // IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 532-539.
|
|
|
[11] |
LIU X Y An empirical study of boosting methods on severely imbalanced data[J]. Applied Mechanics and Materials, 2014, 513 (2): 2510- 2513
|
|
|
[12] |
DING C, SONG B, AKSHAY M, et al Collaborative sensing in a distributed PTZ camera network[J]. IEEE Transactions on Image Processing, 2012, 21 (7): 3282- 3295
doi: 10.1109/TIP.2012.2188806
|
|
|
[13] |
BERNARDIN K, CAMP F V D, STIEFELHAGEN R. Automatic person detection and tracking using fuzzy controlled active cameras [C] // IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
|
|
|
[14] |
SCOTTI G, MARCENARO L, COELHO C, et al Dual camera intelligent sensor for high definition 360 degrees surveillance[J]. IEE Proceedings of Vision Image and Signal Processing, 2005, 152 (2): 250- 257
doi: 10.1049/ip-vis:20041302
|
|
|
[15] |
KIM S, CHOI J. Face recognition method based on fixed and PTZ camera control for moving humans [C] // 2019 11th International Conference on Ubiquitous and Future Networks. Zagreb: IEEE, 2019: 561-563.
|
|
|
[16] |
张文靖. 人脸-摄像机主动位姿协同[D]. 昆明: 昆明理工大学, 2019. ZHANG Wen-jing. Face-camera active pose cooperation [D]. Kunming: Kunming University of Science and Technology, 2019.
|
|
|
[17] |
曾慧, 穆志纯, 袁立 基于三维模型的人脸姿态估计方法[J]. 计算机工程, 2011, 37 (9): 1- 3 ZENG Hui, MU Zhi-chun, YUAN li Face pose estimation method based on 3D model[J]. Computer Engineering, 2011, 37 (9): 1- 3
|
|
|
[18] |
LEE D, YANG M H, OH S. Fast and accurate head pose estimation via random projection forests [C] // IEEE Proceedings of the International Conference on Computer Vision. Santiago: IEEE, 2015: 1958-1966.
|
|
|
[19] |
MURPHY C E, TRIVEDI M M Head pose estimation in computer: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (4): 607- 626
doi: 10.1109/TPAMI.2008.106
|
|
|
[20] |
王世宙. 双目立体测量系统中数控平台的设计与标定 [D]. 南京: 南京航空航天大学, 2011. WANG Shi-zhou. The design and calibration of the NC platform in binocular stereo measurement [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
|
|
|
[21] |
邵杰, 张爱武, 王书民, 等 交替误差补偿的无人飞艇位姿估计[J]. 计算机辅助设计与图形学学报, 2013, 25 (9): 1361- 1367 SHAO Jie, ZHANG Ai-wu, WANG Shu-min, et al Pose estimation of unmanned airship of alternating error compensation[J]. Journal of Computer-Aided Design and Computer Graphics, 2013, 25 (9): 1361- 1367
|
|
|
[22] |
龚健雅, 季顺平 从摄影测量到计算机视觉[J]. 武汉大学学报: 信息科学版, 2017, 42 (11): 1518- 1522 GONG Jian-ya, JI Shun-ping Form photogrammetry to computer vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42 (11): 1518- 1522
|
|
|
[23] |
龚健雅, 季顺平 摄影测量与深度学习[J]. 测绘学报, 2018, 47 (6): 693- 704 GONG Jian-ya, JI Shun-ping Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (6): 693- 704
|
|
|
[24] |
DROUARD V, HORAUD R, DELEFORGE A, et al Robust head-pose estimation based on partially-latent mixture of linear regressions[J]. IEEE Transactions on Image Processing, 2017, 26 (3): 1428- 1440
doi: 10.1109/TIP.2017.2654165
|
|
|
[25] |
李成龙, 钟凡, 马昕, 等 基于卡尔曼滤波和随机回归森林的实时头部姿态估计[J]. 计算机辅助设计与图形学学报, 2017, 29 (12): 2309- 2316 LI Cheng-long, ZHONG Fan, MA Xin, et al Real-time head pose estimation based on Kalman and random regression forest[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (12): 2309- 2316
doi: 10.3724/SP.J.1089.2017.16521
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|