Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1936-1944    DOI: 10.3785/j.issn.1008-973X.2020.10.010
    
Camera active pose cooperation for obtaining face frontal images
Wen-tao WANG(),Jia-tian LI*(),Hua-jing WU,Peng GAO,Xiao-hui A,Zhi-hao ZHU
Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Download: HTML     PDF(1751KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A face-to-camera active pose cooperation method was proposed in order to reduce the impact of face rotation in object space by actively adjusting the position and attitude of the camera. Environment of pose cooperation was constructed by using an industrial camera and a synchronous belt-like motion controller. The angle of a moving face pose and the relative position between the camera and the face were solved by a single image space resection. The mapping relationship between the coordinate systems of the face, the camera and the motion controller was calculated. The camera motion was controlled by the camera's coordinated pose control calculated from the relative position of the camera and the face attitude angle at the adjacent sampling time, and the face frontal image was acquired actively and real-time. The experimental results showed that the camera point position error on the motion axis was less than 10 mm, and the extracted frontal image improved the accuracy and robustness of face correction.



Key wordscorrection of face images      face frontal images      photogrammetry      face pose angle      pose cooperation      motion controller     
Received: 28 August 2019      Published: 28 October 2020
CLC:  TP 302  
Corresponding Authors: Jia-tian LI     E-mail: 413274795@qq.com;ljtwcx@163.com
Cite this article:

Wen-tao WANG,Jia-tian LI,Hua-jing WU,Peng GAO,Xiao-hui A,Zhi-hao ZHU. Camera active pose cooperation for obtaining face frontal images. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1936-1944.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.010     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1936


摄像机主动位姿协同的人脸正视图像获取方法

为了主动调整摄像机的位置姿态以在物方空间降低由人脸旋转带来的影响,提出人脸-摄像机主动位姿协同方法. 利用工业摄像机与同步带类运动控制器搭建位姿协同环境,根据单像空间后方交会方法求解运动人脸姿态角和相对位置,计算人脸、摄像机和运动控制器各坐标系之间的映射关系,摄像机运动由相邻采样时刻摄像机相对位置和人脸姿态角计算得出的摄像机协同位姿控制,主动、实时地获取人脸正视图像. 实验表明,运动轴上的摄像机点位误差小于10 mm,取得的人脸正视图像提高了人脸纠正的精准度与鲁棒性.


关键词: 人脸纠正,  人脸正视图像,  摄影测量,  人脸姿态角,  位姿协同,  运动控制器 
Fig.1 Conversion diagram for world coordinate system to camera coordinate system
Fig.2 Camera motion controller
Fig.3 Position diagram of each coordinate system at initial sampling time
Fig.4 Schematic diagram of relationship between face and camera position
特征点 XW YW ZW
左眼左角点 ?220.0 165.0 ?130.0
嘴巴左角点 ?145.0 ?145.0 ?120.0
右眼右角点 220.0 165.0 ?130.0
嘴巴右角点 145.0 ?145.0 ?120.0
下巴 0.0 ?325.0 ?60.0
鼻尖 0.0 0.0 0.0
Tab.1 Three-dimensional coordinates of feature points of standard face model
ti 人脸姿态 φ φ' ω ω' κ κ'
t1 0.0306 0.0307 ?0.2621 ?0.2613 3.1195 3.1200
t2 0.0308 0.0305 ?0.3072 ?0.3064 3.1186 3.1179
t3 0.0319 0.0311 ?0.8121 ?0.8112 3.1178 3.1173
t4 0.0305 0.0312 ?1.1629 ?1.1638 3.1260 3.1256
t5 0.0316 0.0315 ?0.7629 ?0.7628 2.8835 2.8829
t6 0.5354 0.5353 ?0.2771 ?0.2770 3.1225 3.1217
t7 ?0.3146 ?0.3148 ?0.2551 ?0.2555 3.1135 3.1138
Tab.2 Face pose at different sampling moments
ti XS ${X_S^{'}}$ ${Y_S}$ ${Y_S^{'}}$ ZS ${Z_S^{'}}$
t1 10.230 11.610 10.511 8.261 2449.88 2442.07
t2 80.299 78.629 21.900 18.840 2449.88 2450.25
t3 53.597 52.457 46.397 44.217 2449.87 2451.95
t4 41.106 39.416 35.589 39.119 2449.07 2456.19
t5 109.310 106.660 42.763 47.613 2450.17 2455.20
t6 14.464 16.014 65.387 61.317 2449.77 2452.04
t7 4.230 4.140 ?33.453 ?37.803 2449.97 2444.28
Tab.3 Relative camera position at different sampling moments
位置 X Y Z φ ω κ
P1 107.33 82.02 2452.59 0.061 ?0.29 3.124
P2 115.85 84.06 2457.74 0.058 ?0.281 3.121
P3 123.13 84.02 2459.14 0.064 ?0.317 3.054
P4 128.66 83.86 2462.48 0.072 ?0.371 3.078
P5 131.64 83.93 2464.75 0.061 ?0.359 3.049
P6 135.84 82.31 2467.73 0.072 ?0.395 3.061
P7 149.44 83.45 2468.52 0.073 ?0.402 3.13
P8 161.56 84.75 2469.77 0.069 ?0.456 3.044
P9 161.87 83.13 2470.87 0.061 ?0.467 3.127
P10 168.81 82.54 2479.31 0.072 0.005 3.073
Tab.4 Face pose and relative camera position
位置变化 x y u
Tx/mm P/PPU Ty/mm P/PPU Rω/rad P/PPU
P1P2 5.809 1452.25 0.049 12.25 0.0837 59.757
P2P3 7.168 1792.00 ?0.018 ?4.50 0.0361 48.966
P3P4 10.735 2683.75 0.142 35.50 0.0697 52.631
P4P5 4.731 1182.75 0.099 24.75 0.0588 49.678
P6P7 7.847 1961.75 0.054 13.50 0.0751 68.308
P7P8 13.574 3393.5 0.098 24.50 0.0772 58.230
P8P9 15.684 3921 0.093 23.25 0.0315 29.013
P9P10 10.944 2736 0.026 6.50 0.0352 38.888
Tab.5 Camera position change and stepper motor pulse input
Fig.5 Position error curve of camera on x and y axis
ti Ec/mm Ep/mm Em/mm
t1 ?7.58 ?6.445 ?1.135
t2 3.16 2.740 0.42
t3 8.14 7.308 0.832
t4 6.92 6.181 0.739
t5 ?6.17 ?5.615 ?0.555
t6 4.37 3.852 0.518
t7 6.46 5.713 0.747
t8 7.78 6.990 0.790
t9 ?2.57 ?2.370 ?0.200
t10 2.66 2.501 0.159
Tab.6 Camera position x-axis error analysis
Fig.6 Analysis of camera y-axis position error at different translation speeds
Fig.7 Analysis of u-axis position error of camera at different angular velocities
Fig.8 Comparative analysis of alignment between face image and face image
Fig.9 Contrast analysis of face image and face-up image at different deflection angles
Fig.10 Contrast analysis of face image and face-up image at different deflection angles
[1]   CAO X, WEI Y, WEN F, et al Face alignment by explicit shape regression[J]. International Journal of Computer Vision, 2014, 107 (2): 177- 190
doi: 10.1007/s11263-013-0667-3
[2]   ZHANG K, ZHANG Z, LI Z, et al Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23 (10): 1499- 1503
doi: 10.1109/LSP.2016.2603342
[3]   CHEN D, REN S, WEI Y, et al. Joint cascade face detection and alignment [C] // European Conference on Computer Vision. Switzerland: Springer, 2014: 109-122.
[4]   LIAO S, JAIN A K, LI S Z Partial face recognition: alignment-free approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35 (5): 1193- 1205
doi: 10.1109/TPAMI.2012.191
[5]   MCNEILL G, VIJAYAKUMAR S. Hierarchical procrustes matching for shape retrieval [C] // 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 885-894.
[6]   LIN C, ZHANG T, LV C, et al. Improved explicit shape regression face alignment algorithm[C] // 2018 Chinese Control and Decision Conference. Shenyang: IEEE, 2018: 1166-1169.
[7]   DANTONE M, GALL J, FANELLI G, et al. Realtime facial feature detection using conditional regression forests [C] // IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2578-2585.
[8]   LI Q, SUN Z, HE R. Fast multi-view face alignment via multi-task auto-encoders [C] // 2017 IEEE International Joint Conference on Biometrics. Denver: IEEE, 2017: 538-545.
[9]   TZIMIROPOULOS G. Project-out cascaded regression with an application to face alignment [C] // IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3659-3667.
[10]   XIONG X, TORRE F D L. Supervised descent method and its applications to face alignment [C] // IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 532-539.
[11]   LIU X Y An empirical study of boosting methods on severely imbalanced data[J]. Applied Mechanics and Materials, 2014, 513 (2): 2510- 2513
[12]   DING C, SONG B, AKSHAY M, et al Collaborative sensing in a distributed PTZ camera network[J]. IEEE Transactions on Image Processing, 2012, 21 (7): 3282- 3295
doi: 10.1109/TIP.2012.2188806
[13]   BERNARDIN K, CAMP F V D, STIEFELHAGEN R. Automatic person detection and tracking using fuzzy controlled active cameras [C] // IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis: IEEE, 2007: 1-8.
[14]   SCOTTI G, MARCENARO L, COELHO C, et al Dual camera intelligent sensor for high definition 360 degrees surveillance[J]. IEE Proceedings of Vision Image and Signal Processing, 2005, 152 (2): 250- 257
doi: 10.1049/ip-vis:20041302
[15]   KIM S, CHOI J. Face recognition method based on fixed and PTZ camera control for moving humans [C] // 2019 11th International Conference on Ubiquitous and Future Networks. Zagreb: IEEE, 2019: 561-563.
[16]   张文靖. 人脸-摄像机主动位姿协同[D]. 昆明: 昆明理工大学, 2019.
ZHANG Wen-jing. Face-camera active pose cooperation [D]. Kunming: Kunming University of Science and Technology, 2019.
[17]   曾慧, 穆志纯, 袁立 基于三维模型的人脸姿态估计方法[J]. 计算机工程, 2011, 37 (9): 1- 3
ZENG Hui, MU Zhi-chun, YUAN li Face pose estimation method based on 3D model[J]. Computer Engineering, 2011, 37 (9): 1- 3
[18]   LEE D, YANG M H, OH S. Fast and accurate head pose estimation via random projection forests [C] // IEEE Proceedings of the International Conference on Computer Vision. Santiago: IEEE, 2015: 1958-1966.
[19]   MURPHY C E, TRIVEDI M M Head pose estimation in computer: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31 (4): 607- 626
doi: 10.1109/TPAMI.2008.106
[20]   王世宙. 双目立体测量系统中数控平台的设计与标定 [D]. 南京: 南京航空航天大学, 2011.
WANG Shi-zhou. The design and calibration of the NC platform in binocular stereo measurement [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011.
[21]   邵杰, 张爱武, 王书民, 等 交替误差补偿的无人飞艇位姿估计[J]. 计算机辅助设计与图形学学报, 2013, 25 (9): 1361- 1367
SHAO Jie, ZHANG Ai-wu, WANG Shu-min, et al Pose estimation of unmanned airship of alternating error compensation[J]. Journal of Computer-Aided Design and Computer Graphics, 2013, 25 (9): 1361- 1367
[22]   龚健雅, 季顺平 从摄影测量到计算机视觉[J]. 武汉大学学报: 信息科学版, 2017, 42 (11): 1518- 1522
GONG Jian-ya, JI Shun-ping Form photogrammetry to computer vision[J]. Geomatics and Information Science of Wuhan University, 2017, 42 (11): 1518- 1522
[23]   龚健雅, 季顺平 摄影测量与深度学习[J]. 测绘学报, 2018, 47 (6): 693- 704
GONG Jian-ya, JI Shun-ping Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (6): 693- 704
[24]   DROUARD V, HORAUD R, DELEFORGE A, et al Robust head-pose estimation based on partially-latent mixture of linear regressions[J]. IEEE Transactions on Image Processing, 2017, 26 (3): 1428- 1440
doi: 10.1109/TIP.2017.2654165
[25]   李成龙, 钟凡, 马昕, 等 基于卡尔曼滤波和随机回归森林的实时头部姿态估计[J]. 计算机辅助设计与图形学学报, 2017, 29 (12): 2309- 2316
LI Cheng-long, ZHONG Fan, MA Xin, et al Real-time head pose estimation based on Kalman and random regression forest[J]. Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (12): 2309- 2316
doi: 10.3724/SP.J.1089.2017.16521
[1] Qi WANG,Kun XIE,Yan MA,Qun CONG. Detection of DNS tunnels based on log statistics feature[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1753-1760.
[2] Huang-yao ZENG,Dan-dan LI,Yan MA,Qun CONG. Risky accounts evaluation method of campus network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1761-1767.
[3] Xing-cheng HUA,Peng LIU. Near-data processing based on dynamic task offloading[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2348-2356.
[4] Na LV,Chuang LIU,Ke-fan CHEN,Fang-bo CAO. Software defined airborne network election algorithm considering controller failure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 785-793.
[5] JI Chang qing, YU Sheng, WANG Bao feng, TAO Shuai . Bichromatic reverse nearest neighbor query algorithm in environment of mobile cloud computing[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1330-1337.
[6] YU Ji yang, LIU Peng, HUA Xing cheng, MA Xiang, YANG Jian yi. Simulation approach of hybrid optical electrical on chip interconnects for multicore systems[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2214-2222.
[7] YE Xia, XIN Yuan, LIU Yong, LIU Peng. Stream Prefetcher based on MediaDSP[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 268-278.
[8] SU Cheng, YU Wei-bin, NI Guang-yi, HUANG Zhi-cai,TAO Chun-hui, ZHANG Xiao-c. Display and control system for deep water multi-beam bathymetric side-scan sonar[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 934-943.
[9] QUAN Li, CHENG Ai-lian, PAN Yun, DING Yong, YAN Xiao-lang. Bypassed channels based differentiated service implementation method for network-on-chip[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 957-968.
[10] ZHANG Zhen, LI Shan-ping. DVFS-aware CPU service time estimation method[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 725-733.
[11] FU Chao-yang, GAO Ji, ZHOU You-ming. ATCL:formalization tool for commitment-based agent organization[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 627-636.
[12] CAO Xiao-yang, PAN Yun, YAN Xiao-lang, HUAN Ruo-hong. Systolic structure for DCT with low area-time complexity[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(4): 656-659.
[13] HUANG Xue-wei, ZHANG Pei-yong, LV Dong-ming, ZHENG Dan-dan, YAN Xiao-lang. Fast setup time characterization of static random access memory
 based on search-delay
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 445-450.
[14] XU Hong-ming, MENG Jian-yi, YAN Xiao-lang, GE Hai-tong. Translation look-aside buffer design method based on
cache resource reusing
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 462-466.
[15] GONG Shuai-shuai, WU Xiao-bo, MENG Jian-yi, DING Yong-lin. Linking history based low-power instruction cache[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(3): 467-471.