Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 671-683    DOI: 10.3785/j.issn.1008-973X.2019.04.008
    
Ambient VOCs characteristics and associated effects in urban Hangzhou
Kang-wei LI1(),Fang YING2,Ling-hong CHEN1,*(),Xian-jue ZHENG2,Li-xia HAN1,Xue-cheng WU1,Xiang GAO1,Ke-fa CEN1
1. State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Environmental Monitoring Center Station, Hangzhou 310007, China
Download: HTML     PDF(1903KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Measurements of 56 volatile organic compounds (VOCs) species were obtained using online GC-FID/PID through one-year observation in urban Hangzhou in 2013. The VOCs composition, seasonal variation and diurnal cycles were analyzed. The annually averaged total VOCs was 42.1×10?9, with alkane accounting for 54%, followed by alkene (23.4%), aromatic (14.4%) and acetylene (8.2%). The diurnal cycles of VOCs showed lower values in daytime than nighttime, with minimum value at 14:00. Further analysis on typical species showed that the vehicle emissions were possibly regarded as the major VOCs source in urban Hangzhou. Both propene-equivalent concentration and ozone formation potential (OFP) analysis indicated that alkenes contributed over 60% of total VOCs reactivity. Associated meteorological effects showed that VOCs volume fractions were negative to temperature in 11-40 °C, while positive to relative humidity. Solar radiation has significant impact on VOCs values, while wet removal effect was not obvious. Eastern and northern winds were dominated for the whole year, but the volume fraction distribution of VOCs in different wind directions was not obvious. The VOCs volume fractions decreased as wind speed increased, regardless any wind direction. For different seasons, the impact extent of wind speed followed order as autumn>winter>spring>summer.



Key wordsvolatile organic compounds (VOCs)      urban pollution      diurnal cycle      ozone formation potential      meteorological effect     
Received: 28 December 2017      Published: 28 March 2019
CLC:  X 511  
Corresponding Authors: Ling-hong CHEN     E-mail: likangweizju@qq.com;chenlh@zju.edu.cn
Cite this article:

Kang-wei LI,Fang YING,Ling-hong CHEN,Xian-jue ZHENG,Li-xia HAN,Xue-cheng WU,Xiang GAO,Ke-fa CEN. Ambient VOCs characteristics and associated effects in urban Hangzhou. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 671-683.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.008     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/671


杭州市主城区VOCs污染特征及影响因素

采用在线气相色谱仪,2013年在杭州市主城区对56种挥发性有机物(VOCs)开展1年的连续观测. 研究VOCs组成、季节变化特征和日变化规律,总VOCs年均体积分数为42.1×10?9,其中烷烃占54.0%,烯烃占23.4%,芳香烃占14.4%,炔烃占8.2%. 日变化规律表现为夜晚体积分数高于白天,在14:00达到全天最低值. 分析VOCs特征物种发现,机动车尾气可能是主城区VOCs的主要来源. 丙烯等效体积分数和臭氧生成潜势(OFP)均表明,VOCs反应活性较大的是烯烃,对OH活性和OFP的贡献率均超过60%,其次芳香烃和烷烃. 分析气象要素与VOCs体积分数关系发现,在11~40 °C下VOCs体积分数随着温度的升高而降低,与湿度有明显的正相关. 光照对VOCs体积分数的影响较大,降水对VOCs的冲刷不明显. 杭州全年以东风、北风为主导风向,但不同风向下的VOCs体积分数分布规律不明显. 不论是主导还是非主导风向,VOCs体积分数始终随着风速的增大而减小,对于不同季节,风速影响幅度依次是秋季>冬季>春季>夏季.


关键词: 挥发性有机物,  城市污染,  日变化,  臭氧生成潜势,  气象要素 
Fig.1 Monthly averaged VOCs in urban Hangzhou
城市 时间 站点属性 ${\varphi _{\rm B}}$/% 文献
烷烃 烯烃 芳香烃 炔烃
注:表格中已剔除武汉和北京2个城市含氧VOCs和卤代烃的原始数据,并重新计算.
杭州 2013全年 城区 54.0 23.4 14.4 8.2 本文
北京 2014全年 城区 57.5 18.6 12.9 11.0 文献[20]
上海 2010全年 城区 46.7 11.3 33.2 8.8 文献[7]
南京 2013.3~2014.2 郊区 46.1 21.9 22.0 10.0 文献[8]
广州 2011.6~2012.5 城区 58.0 16.0 26.0 ? 文献[13]
武汉 2014.10 城区 54.8 20.8 13.7 10.7 文献[21]
Tab.1 Summary of ambient VOCs composition in typical cities in China
Fig.2 Seasonal and annual diurnal cycles of O3, NOx, VOCs, CO and typical VOC species
类别 物种 含碳数 kOH/1012 MIR VMR/10?9 Prop-Equiv/10?9 OFP/10?9
烷烃 乙烷 2 0.24 0.25 2.76 0.05 0.69
丙烷 3 1.10 0.48 4.59 0.58 2.20
异丁烷 4 2.34 1.21 4.17 1.48 5.05
正丁烷 4 2.54 1.02 3.20 1.23 3.26
异戊烷 5 3.90 1.38 1.68 1.24 2.32
正戊烷 5 3.94 1.04 1.01 0.76 1.05
环戊烷 5 5.16 2.40 0.81 0.79 1.94
2,2-二甲基丁烷 6 2.32 0.82 0.24 0.13 0.20
2,3-二甲基丁烷 6 6.30 1.07 3.32 4.78 3.56
2-甲基戊烷 6 5.60 1.50 0.69 0.88 1.04
3-甲基戊烷 6 5.70 1.50 0.86 1.12 1.29
正己烷 6 5.61 0.98 1.00 1.29 0.98
甲基环戊烷 6 7.05 2.80 2.29 3.68 6.40
环己烷 6 7.49 1.28 0.62 1.06 0.79
2,4-二甲基戊烷 7 5.10 1.50 1.96 2.67 2.95
正庚烷 7 7.15 0.81 0.75 1.43 0.61
甲基环己烷 7 10.4 1.80 0.40 1.10 0.72
2-甲基己烷 7 7.18 1.08 0.41 0.79 0.45
2,3-二甲基戊烷 7 1.31 0.21 0.69 0.24 0.15
3-甲基己烷 7 7.18 1.40 0.83 1.59 1.16
2,2,4-三甲基戊烷 8 3.68 0.93 0.33 0.37 0.31
2,3,4-三甲基戊烷 8 7.00 1.60 0.82 1.74 1.31
2-甲基庚烷 8 0.96 0.01 1.17 0.34 0.01
3-甲基庚烷 8 8.54 0.99 0.32 0.82 0.31
正辛烷 8 8.68 0.60 0.40 1.05 0.24
正壬烷 9 10.20 0.54 0.21 0.73 0.11
正葵烷 10 11.60 0.46 0.48 2.13 0.22
十一烷 11 13.20 0.42 0.33 1.85 0.14
烯烃 乙烯 2 8.52 9.00 4.95 3.21 44.54
丙烯 3 26.3 9.40 1.41 4.22 13.23
1-丁烯 4 31.4 8.90 0.73 3.48 6.48
烯烃 异丁烯 4 51.4 6.29 1.78 13.93 11.20
1,3-丁二烯 4 66.6 10.9 0.94 9.48 10.20
顺-2-丁烯 4 56.4 10 0.56 4.83 5.63
反-2-丁烯 4 64 10 0.64 6.22 6.39
1-戊烯 5 31.4 6.2 0.48 2.87 2.98
异戊二烯 5 101 9.1 3.72 71.48 33.88
顺-2-戊烯 5 65 8.8 0.23 2.82 2.01
反-2-戊烯 5 67 8.8 0.21 2.68 1.85
1-己烯 6 37 5.49 0.16 1.31 0.85
芳香烃 6 1.23 0.42 0.91 0.25 0.38
甲苯 7 5.96 2.7 1.98 3.15 5.36
乙苯 8 7.1 2.7 1.56 3.37 4.21
对/间二甲苯 8 23.6 8.2 0.42 2.99 3.41
邻二甲苯 8 13.7 6.5 0.47 1.97 3.07
苯乙烯 8 10 2.2 0.62 1.89 1.37
异丙苯 9 6.5 2.2 0.23 0.50 0.50
正丙苯 9 6 2.1 0.23 0.46 0.47
1,3,5-三甲基苯 9 57.5 10.1 0.61 12.04 6.18
1,2,4-三甲基苯 9 32.5 8.8 0.31 3.42 2.71
间乙基甲苯 9 19.2 1.57 0.53 3.47 0.83
对乙基甲苯 9 12.1 1.15 0.79 3.28 0.91
邻乙基甲苯 9 12.3 0.14 0.37 1.56 0.05
1,2,3-三甲苯 9 32.7 8.9 0.45 5.06 4.03
间/对二乙苯 10 24.3 0.08 0.23 2.11 0.02
炔烃 乙炔 2 0.83 0.5 5.51 0.35 2.75
Tab.2 Annually averaged volume mixing ratio (VMR), propene-equivalent concentration (Prop-Equiv) and ozone formation potential (OFP) of 56 VOCs species
Fig.3 Seasonal and annual contribution of VOCs category to volume mixing ratio, propene-equivalent concentration and ozone formation potential
排序 化合物 VMR/10?9 P/% 化合物 Prop-Equiv/10?9 P/% 化合物 OFP/10?9 P/%
1 乙炔 5.5 8.2 异戊二烯 71.5 34.3 乙烯 44.5 20.7
2 乙烯 4.9 7.3 异丁烯 13.9 6.7 异戊二烯 33.9 15.8
3 丙烷 4.6 6.8 1,3,5-三甲基苯 12.0 5.8 丙烯 13.2 6.2
4 异丁烷 4.2 6.2 1,3-丁二烯 9.5 4.6 异丁烯 11.2 5.2
5 异戊二烯 3.7 5.5 反-2-丁烯 6.2 3.0 1,3-丁二烯 10.2 4.8
6 2,3-二甲基丁烷 3.3 4.9 1,2,3-三甲苯 5.1 2.4 1-丁烯 6.5 3.0
7 正丁烷 3.2 4.7 顺-2-丁烯 4.8 2.3 甲基环戊烷 6.4 3.0
8 乙烷 2.8 4.1 2,3-二甲基丁烷 4.8 2.3 反-2-丁烯 6.4 3.0
9 甲基环戊烷 2.3 3.4 丙烯 4.2 2.0 1,3,5-三甲基苯 6.2 2.9
10 甲苯 2.0 2.9 甲基环戊烷 3.7 1.8 顺-2-丁烯 5.6 2.6
11 2,4-二甲基戊烷 2.0 2.9 1-丁烯 3.5 1.7 甲苯 5.4 2.5
12 异丁烯 1.8 2.6 间乙基甲苯 3.5 1.7 异丁烷 5.0 2.4
13 异戊烷 1.7 2.5 1,2,4-三甲基苯 3.4 1.6 乙苯 4.2 2.0
14 乙苯 1.6 2.3 乙苯 3.4 1.6 1,2,3-三甲苯 4.0 1.9
15 丙烯 1.4 2.1 对乙基甲苯 3.3 1.6 2,3-二甲基丁烷 3.6 1.7
16 2-甲基庚烷 1.2 1.7 乙烯 3.2 1.5 对/间二甲苯 3.4 1.6
17 正戊烷 1.0 1.5 甲苯 3.1 1.5 正丁烷 3.3 1.5
18 正己烷 1.0 1.5 对/间二甲苯 3.0 1.4 邻二甲苯 3.1 1.4
19 1,3-丁二烯 0.9 1.4 1-戊烯 2.9 1.4 1-戊烯 3.0 1.4
20 0.9 1.3 顺-2-戊烯 2.8 1.4 2,4-二甲基戊烷 2.9 1.4
Tab.3 Annual top 20 VOCs species based on volume mixing ratio, propene-equivalent concentration and ozone formation potential
Fig.4 Changes of VOCs volume fraction on temperature
Fig.5 Changes of VOCs volume fraction on relative humidity
Fig.6 Interaction of temperature, relative humidity and VOCs volume fraction
Fig.7 Interaction of daily average of VOCs volume fraction, daily maximum of solar radiation and daily maximum of O3 volume fraction
月份 降水天数/d 降水量/mm ${\varphi _{\rm t }}$(VOCs)/10?9 相对变化/% ${\varphi _{\rm s}} $(VOCs)/10?9 相对变化/%
非降水期间 降水期间 非降水期间 降水期间
1 6 24.9 45.6 80.9 77.2 37.9 64.8 71.0
2 17 66.8 29.3 30.5 4.0 23.6 26.3 11.4
3 13 115.9 43.1 43.0 ?0.1 28.0 38.2 36.3
4 8 98.1 37.7 33.2 ?11.9 28.1 33.3 18.3
5 10 121.3 39.2 34.8 ?11.3 27.5 33.8 22.9
6 18 346 38.1 41.0 7.5 31.6 37.7 19.3
7 3 9.3 37.6 32.3 ?14.1 28.9 25.7 ?11.2
8 12 212.1 37.2 31.8 ?14.4 26.9 24.5 ?8.9
9 10 49.4 23.9 23.0 ?4.0 17.3 21.9 26.8
10 8 331 43.7 33.0 ?24.5 39.2 27.2 ?30.7
11 8 32.6 67.6 51.3 ?24.1 35.9 46.3 28.8
12 4 82.7 62.0 28.4 ?54.2 44.6 19.6 ?56.0
Tab.4 Comparison of VOCs volume fraction for rainy and non-rainy days
Fig.8 Seasonal and annual wind roses in Hangzhou colored by VOCs volume fractions
Fig.9 Seasonal changes of VOCs volume fraction of wind speed under different dominated wind direction
[1]   GUO H, LING Z H, CHENG H R, et al Tropospheric volatile organic compounds in China[J]. Science of the Total Environment, 2017, 574: 1021- 1043
doi: 10.1016/j.scitotenv.2016.09.116
[2]   唐孝炎, 张远航, 邵敏, 等. 大气环境化学[M]. 2版. 北京: 高等教育出版社, 2006.
[3]   邵敏, 付琳琳, 刘莹, 等 北京市大气挥发性有机物的关键活性组分及其来源[J]. 中国科学: D辑, 2005, 35 (A01): 123- 130
SHAO Min, FU Lin-lin, LIU Ying, et al Key volatile organic compounds in Beijing and their sources[J]. Science China: Series D, 2005, 35 (A01): 123- 130
[4]   王伯光, 张远航, 邵敏 珠江三角洲大气环境VOCs的时空分布特征[J]. 环境科学, 2004, 25 (增1): 7- 15
WANG Bo-guang, ZHANG Yuan-hang, SHAO Min Special and temporal distribution character of VOCs in the ambient air of Peal River Delta region[J]. Environmental Science, 2004, 25 (增1): 7- 15
[5]   邓雪娇, 王新明, 赵春生, 等 珠江三角洲典型过程 VOCs 的平均体积分数与化学反应活性[J]. 中国环境科学, 2010, 30 (9): 1153- 1161
DENG Xue-jiao, WANG Xin-ming, ZHAO Chun-sheng, et al The mean concentration and chemical reactivity of VOCs of typical processes over Pearl River Delta Region[J]. China Environmental Science, 2010, 30 (9): 1153- 1161
[6]   卢学强, 韩萌, 冉靓, 等 天津中心城区夏季非甲烷有机化合物组成特征及其臭氧产生潜力分析[J]. 环境科学学报, 2011, 31 (2): 373- 380
LU Xue-qiang, HAN Meng, RAN Liang, et al Characteristic of nonmethane organic compounds and their ozone formation potentials in downtown Tianjin in summer[J]. Acta Scientiae Circumstantiae, 2011, 31 (2): 373- 380
[7]   陈长虹, 苏雷燕, 王红丽, 等 上海市城区VOCs的年变化特征及其关键活性组分[J]. 环境科学学报, 2012, 32 (2): 367- 376
CHEN Chang-hong, SU Lei-yan, WANG Hong-li, et al Variation and key reactive species of ambient VOCs in the urban area of Shanghai, China[J]. Acta Scientiae Circumstantiae, 2012, 32 (2): 367- 376
[8]   林旭, 朱彬, 安俊琳, 等 南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J]. 中国环境科学, 2015, 35 (4): 976- 986
LIN Xu, ZHU Bin, AN Jun-lin, et al Potential contribution of secondary organic aerosols and ozone of VOCs in the northern suburb of Nanjing[J]. China Environmental Science, 2015, 35 (4): 976- 986
[9]   洪盛茂, 焦荔, 何曦, 等 杭州典型区域C2-12质量体积分数变化及臭氧潜势量分析[J]. 环境科学研究, 2009, (8): 938- 943
HONG Sheng-mao, JIAO Li, HE Xi, et al Variations in mass concentrations and ozone formation potentials of C2-12 hydrocarbons in typical areas of Hangzhou, China[J]. Research of Environmental Sciences, 2009, (8): 938- 943
[10]   应方, 包贞, 杨成军, 等 杭州市道路空气中挥发性有机物及其大气化学反应活性研究[J]. 环境科学学报, 2012, 32 (12): 3056
YING Fang, BAO Zhen, YANG Cheng-jun, et al Analysis of volatile organic compounds (VOCs) and their atmospheric chemical reactivity in ambient air around urban traffic roads in Hangzhou[J]. Acta Scientiae Circumstantiae, 2012, 32 (12): 3056
[11]   LI K, CHEN L, YING F, et al Meteorological and chemical impacts on ozone formation: a case study in Hangzhou, China[J]. Atmospheric Research, 2017, 196: 40- 52
doi: 10.1016/j.atmosres.2017.06.003
[12]   朱少峰, 黄晓锋, 何凌燕, 等 深圳大气VOCs体积分数的变化特征与化学反应活性[J]. 中国环境科学, 2012, 32 (12): 2140- 2148
ZHU Shao-feng, HUANG Xiao-feng, HE Ling-yan, et al Variation characteristics and chemical reactivity of ambient VOCs in Shenzhen[J]. China Environmental Science, 2012, 32 (12): 2140- 2148
doi: 10.3969/j.issn.1000-6923.2012.12.005
[13]   邹宇, 邓雪娇, 王伯光, 等 广州番禺大气成分站挥发性有机物的污染特征[J]. 中国环境科学, 2013, 33 (5): 808- 813
ZOU Yu, DENG Xue-jiao, WANG Bo-guang, et al Pollution characteristics of volatile organic compounds in Panyu Composition Station[J]. China Environmental Science, 2013, 33 (5): 808- 813
doi: 10.3969/j.issn.1000-6923.2013.05.006
[14]   施能, 马丽, 袁晓玉, 等 近50a浙江省气候变化特征分析[J]. 大气科学学报, 2001, 24 (2): 207- 213
SHI Neng, MA Li, YUAN Xiao-yu, et al Climate variation features over Zhejiang province in the last 50 years[J]. Transactions of Atmospheric Sciences, 2001, 24 (2): 207- 213
doi: 10.3969/j.issn.1674-7097.2001.02.009
[15]   印红玲, 袁桦蔚, 叶芝祥, 等 成都市大气中挥发性有机物的时空分布特征及臭氧生成潜势研究[J]. 环境科学学报, 2015, 35 (2): 386
YIN Hong-ling, YUAN Hua-wei, YE Zhi-xiang, et al Temporal and spatial distribution of VOCs and their OFP in the atmosphere of Chengdu[J]. Acta Scientiae Circumstantiae, 2015, 35 (2): 386
[16]   LIU Y, SHAO M, FU L, et al Source profiles of volatile organic compounds (VOCs) measured in China: Part I[J]. Atmospheric Environment, 2008, 42 (25): 6247- 6260
doi: 10.1016/j.atmosenv.2008.01.070
[17]   莫梓伟, 邵敏, 陆思华 中国挥发性有机物(VOCs)排放源成分谱研究进展[J]. 环境科学学报, 2014, 34 (9): 2179- 2189
MO Zi-wei, SHAO Min, LU Si-hua Review on volatile organic compounds (VOCs) source profiles measured in China[J]. Acta Scientiae Circumstantiae, 2014, 34 (9): 2179- 2189
[18]   杨辉. 南京北郊VOCs及其来源和光化学特征研究[D]. 南京: 南京信息工程大学, 2014.
YANG Hui. The study of the source apportionment and photochemical properties of VOCs in the northern suburb of Nanjing [D]. Nanjing: Nanjing University of Information Science and Technology, 2014.
[19]   CHAN C Y, CHAN L Y, WANG X M, et al Volatile organic compounds in roadside microenvironments of metropolitan Hong Kong[J]. Atmospheric Environment, 2002, 36 (12): 2039- 2047
doi: 10.1016/S1352-2310(02)00097-3
[20]   王琴, 刘保献, 张大伟, 等 北京市大气VOCs的时空分布特征及化学反应活性[J]. 中国环境科学, 2017, 37 (10): 3636- 3646
WANG Qin, LIU Bao-xian, ZHANG Da-wei, et al Temporal and spatial distribution of VOCs and their role in chemical reactivity in Beijing[J]. China Environmental Science, 2017, 37 (10): 3636- 3646
doi: 10.3969/j.issn.1000-6923.2017.10.004
[21]   段佳鹏, 梁胜文, 李蒲, 等 武汉城区秋季大气挥发性有机物污染特征及部分物种来源的初步分析[J]. 环境监测管理与技术, 2017, 29 (4): 23- 27
DUAN Jia-peng, LIANG Sheng-wen, LI Pu, et al Preliminary analysis on characteristics and source of volatile organic compounds pollution in autumn in Wuhan City[J]. The Administration and Technique of Environmental Monitoring, 2017, 29 (4): 23- 27
doi: 10.3969/j.issn.1006-2009.2017.04.006
[22]   OU J, ZHENG J, LI R, et al Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China[J]. Science of the Total Environment, 2015, 530: 393- 402
[23]   JENKIN M E Analysis of sources and partitioning of oxidant in the UK—Part 1: the NOX-dependence of annual mean concentrations of nitrogen dioxide and ozone[J]. Atmospheric Environment, 2004, 38 (30): 5117- 5129
doi: 10.1016/j.atmosenv.2004.05.056
[24]   刘侃侃. 典型城市交通道路机动车排放CO污染特征研究[D]. 北京: 北京林业大学, 2010.
LIU KAN-kan. The study on the characteristics of CO pollution of motor vehicle emissions in typical urban roads [D]. Beijing: Beijing Forestry University, 2010.
[25]   邹宇, 邓雪娇, 李菲, 等 广州大气中异戊二烯体积分数变化特征, 化学活性和来源分析[J]. 环境科学学报, 2015, 35 (3): 647
ZOU Yu, DENG Xue-jiao, LI Fei, et al Variation characteristics, chemical reactivity and sources of isoprene in the atmosphere of Guangzhou[J]. Acta Scientiae Circumstantiae, 2015, 35 (3): 647
[26]   CARTER W P Development of ozone reactivity scales for volatile organic compounds[J]. Air and Waste, 1994, 44 (7): 881- 899
doi: 10.1080/1073161X.1994.10467290
[27]   齐冰, 牛彧文, 杜荣光, 等 杭州市近地面大气臭氧体积分数变化特征分析[J]. 中国环境科学, 2017, 37 (2): 443- 451
QI Bing, NIU Yu-wen, DU Rong-guang, et al Characteristics of surface ozone concentration in urban site of Hangzhou[J]. China Environmental Science, 2017, 37 (2): 443- 451
[1] Yan-fei WEI,Rong ZHOU,Min-jie ZHOU,Xiang GAO. Pilot study on combined denitration of SNCR-SCR system in cement furnace[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1986-1992.
[2] Jun-ming WANG,Xing-ya ZHAO,Ling-hong CHEN,Li-xia HAN,Xiang GAO,Ke-fa CEN. Ammonia effect on optical properties of secondary organic aerosols[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1812-1818.
[3] Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.
[4] Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.
[5] CHEN Wen cong, HOU Yi wen, WU Jian, WANG Li hong. Characteristics of PM2.5 and VOCs emission from chemical fiber industry[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 145-152.
[6] LI Qing yi, MENG Wei, WU Guo chao, ZHANG Jun, ZHU Song qiang, HU Da qing,ZHENG Cheng hang, GAO Xiang,WANG Ru neng, LIU Hai jiao. Evaluation on operation state and stability for denitrification of ultra low emission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2303-2311.
[7] ZHU Yan qun, YANG Ye, HUANG Jian peng, LIN Fa wei, MA Qiang, XU Chao qun, WANG Zhi hua, CEN Ke fa. Removal of NOx by ozone oxidation from flue gas of 60000 m3/h carbon black drying furnace of rubber plant[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1865-1870.
[8] ZHANG Jun, LI Cun jie, ZHENG Cheng hang, WENG Wei guo, ZHU Song qiang, WANG Ding zhen, GAO Xiang, CEN Ke fa. Experimental of enhancement of simultaneous removing fine particle by sieve tray spray scrubber[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1516-1520.
[9] QIU Shan, CHEN Cong, DENG Feng xia, JI Ya wan, DING Xiao, MA Fang. Rhodamine B wastewater degradation by graphite graphite electro Fenton system[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 704-713.
[10] ZHOU Bin, ZHOU Hao, WANG Jian yang, CEN Ke fa. characteristic of Shenhua coal ash blending with saw dust ash in O2/CO2 atmosphere[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 468-476.
[11] ZHOU Xu ping, FANG Meng xiang, XIANG Qun yang, CAI Dan yun, WANG Tao, LUO Zhong yang. Characteristics of mass transfer in various aqueous amino acid salt solutions for CO2 capture[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 312-319.
[12] SONG Zu wei, ZHONG Zhao ping, ZHANG Bo, Lv Zi ting, DING Kuan. Experimental study on catalytic co pyrolysis of corn stalk and polypropylene[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 333-340.
[13] BAO Qiang, ZHOU Hao, LIU Jian cheng, ZHU Guo dong, SHI Wei, CEN Ke fa. Promotional effect and alkali resistant performance of novel CeO2-V2O5/TiO2-SiO2 catalyst[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1855-1862.
[14] FANG Meng-xiang, JIANG Wen-min, WANG Tao, XIANG Qun-yang, LU Jia-hui, ZHOU Xu-ping. Simulation and optimization of novel CO2 direct steam stripping process based on the experimental results[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1565-1571.
[15] CHEN Yan-ping, WU Si-ming, LU Hui-jian, WEI Bo-lun, HE Yi, SHI Yao. Deactivation mechanism of commercial V2O5-WO3-TiO2 SCR catalysts used in 1 000 MW coal-fired power plant[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 564-570.