Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 214-219    DOI: 10.3785/j.issn.1008-973X.2019.02.002
Energy Engineering     
Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel
Jun CHENG(),Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(865KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The microalgae lipids extracted by continuous flow hydrothermal equipment were deoxidized and hydrocracked under the action of catalyst to produce jet fuel, in order to improve the selectivity of jet fuel from microalgae. The C16~C24 fatty acid was extracted from the microalgae cells by subcritical water, and the fatty acid was deoxidized and hydrocracked under the action of Ni-based mesoporous Y zeolite catalyst to obtain the jet fuel product. Results showed that the selectivity of jet fuel product at 390 °C was 50.79%, with the alkane selectivity of 43.21%. The main component of microalgae hydrothermal lipid was palmitic acid, of which the main jet fuel product after decarboxylation was pentadecane. Fourier transform infrared spectroscopy results showed that the absorption peaks of C=C, ?CHO, and ?CH 2 appeared in the product, indicating that the Ni/Y catalyst can effectively promote the deoxygenation and hydrocracking of the microalgae hydrothermal lipid. Elemental analysis results showed that the mass fractions of carbon and hydrogen in the jet fuel products prepared by hydrothermal lipid were higher than those in the jet fuel products prepared by algae powder. Quantum chemistry calculation showed that the shortest bond length (0.080 071 nm) and the highest bond energy (361.074 5 kJ/mol) existed between the carbon atom in carboxyl group and the ortho carbon atom in the palmitic acid. However, Ni?H could elongate the bond length between these two carbon atoms and promote the occurance of decarboxylation reaction.



Key wordsmicroalgae      jet fuel      decarboxylation      quantum chemistry     
Received: 06 April 2018      Published: 21 February 2019
CLC:  X 511  
Cite this article:

Jun CHENG,Jian-feng LIU,Xi ZHANG,Ze ZHANG,Jiang-lei TIAN,Jun-hu ZHOU,Ke-fa CEN. Microalgae lipids extracted by hydrothermal method through deoxygenation and hydrocracking to produce jet fuel. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 214-219.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.002     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/214


微藻水热提取油脂经脱氧断键制航油

为了提高微藻转化制航油的产物选择性,利用连续流水热装置提取微藻油脂,并经催化剂脱氧断键制航油. 使用亚临界水从微藻细胞中提取得到C16~C24的脂肪酸,将脂肪酸在镍基介孔Y分子筛催化剂作用下脱氧断键得到航油产物,结果显示在390 °C时航油产物的整体选择性高达50.79%,其中烷烃选择性为43.21%. 微藻水热油脂的主要成分为C16脂肪酸,其经过脱羧反应生成航油主要产物C15正构烷烃. 傅里叶变换红外光谱学结果显示航油产物出现C=C双键、?CHO醛基以及?CH2烷基的吸收峰,表明Ni/Y催化剂能有效催化微藻水热油脂脱氧断键. 元素分析结果显示使用水热油脂制备的航油产物中碳和氢元素质量分数高于利用藻粉制备的航油产物中碳和氢元素质量分数. 量子化学计算表明,C16脂肪酸中的羧基碳原子与邻位碳原子之间的键长最短(0.080 071 nm)、键能最高(361.074 5 kJ/mol),但是Ni?H能拉长这2个碳原子之间的键长,使其更容易发生脱羧反应.


关键词: 微藻,  航空燃油,  脱羧,  量子化学 
主要成分 wB/% 主要成分 wB/%
C16H30O2 28.6 C19H38O2 7.5
C16H32O2 25.8 C20H30O2 5.1
C17H34O2 1.9 C22H42O2 1.4
C17H36O2 7.8 C24H48O2 0.9
酰胺大分子等非生物
柴油成分
21.0
Tab.1 Main compositions of lipids extracted from microalgae with hydrothermal method
Fig.1 hydrolysis reaction from triglyceride to palmitic acid
Fig.2 SEM surface morphology of Ni-based mesoporous Y zeolite catalyst
Fig.3 Pore diameter distribution curves of mesoporous and micropore of catalyst 10%Ni/meso-Y
Fig.4 Selectivity of each component of jet fuel produced from microalgae lipids through deoxygenation and hydrocracking under different temperatures
Fig.5 Selectivities of C8 to C17 alkanes under different temperatures
Fig.6 Selectivities of jet fuel components produced by microalgae hydrothermal lipids and algae powder
样品 转化过程 wB/%
C H N O
藻粉原料 一步法 52.32 7.75 6.78 33.15
藻粉直接水热催化脱氧断键的航油产物 一步法 61.21 6.27 1.87 30.65
微藻水热提取的油脂 两步法 70.21 8.64 3.89 17.26
水热油脂催化脱氧断键的航油产物 两步法 72.68 10.38 3.40 13.54
Tab.2 Elemental composition analysis of jet fuel produced by algae powder and microalgae hydrothermal lipids
Fig.7 Chemical bond length analysis of palmitic acid and pentadecane produced through deoxygenation and hydrocracking
Fig.8 Chemical bond energy analysis of palmitic acid and pentadecane produced through deoxygenation and hydrocracking
[1]   ZHANG C, HUI X, LIN Y, et al Recent development in studies of alternative jet fuel combustion: progress, challenges, and opportunities[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120- 138
doi: 10.1016/j.rser.2015.09.056
[2]   CHISTI Y Biodiesel from microalgae beats bioethanol[J]. Trends in Biotechnology, 2008, 26 (3): 126- 131
doi: 10.1016/j.tibtech.2007.12.002
[3]   FORTIER M P, ROBERTS G W, STURN B S, et al Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae[J]. Applied Energy, 2014, 122: 73- 82
doi: 10.1016/j.apenergy.2014.01.077
[4]   ANSARI F A, GUPTA S K, SHRIWASTAV A, et al Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass[J]. Environmental Science and Pollution Research International, 2017, 24 (18): 15299- 15307
doi: 10.1007/s11356-017-9040-3
[5]   ZHOU D, QIAO B Q, LI G, et al Continuous production of biodiesel from microalgae by extraction coupling with transesterification under supercritical conditions[J]. Bioresource Technology, 2017, 238: 609- 615
doi: 10.1016/j.biortech.2017.04.097
[6]   YANG C Y, LI R, CUI C, et al Catalytic hydroprocessing of microalgae-derived biofuels: a review[J]. Green Chemistry, 2016, 18 (13): 3684- 3699
[7]   XING S Y, LV P M, WANG J Y, et al One-step hydroprocessing of fatty acids into renewable aromatic hydrocarbons over Ni/HZSM-5: insights into the major reaction pathways[J]. Physical Chemistry Chemical Physics, 2017, 19 (4): 2961- 2973
doi: 10.1039/C6CP06327F
[8]   MANTE O D, AGBLEVOR F A, OYAMA S T, et al Catalytic pyrolysis with ZSM-5 based additive as co-catalyst to Y zeolite in two reactor configurations[J]. Fuel, 2014, 117: 649- 659
doi: 10.1016/j.fuel.2013.09.034
[9]   CHRISTENSEN C H, JOHANNSEN K, TOERNQVIST E, et al Mesoporous zeolite single crystal catalysts: diffusion and catalysis in hierarchical zeolites[J]. Catalysis Today, 2007, 128: 117- 122
doi: 10.1016/j.cattod.2007.06.082
[10]   CHRISTENSEN C H, JOHANNSEN K, SCHMIDT I, et al Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials[J]. Journal of the American Chemical Society, 2003, 125: 13370- 13371
doi: 10.1021/ja037063c
[11]   JIANG Y, FU Y, LIU L, et al Mechanismof palladium-catalyzed decarboxylative cross-coupling between cyanoacetate salts and aryl halides[J]. Science China Chemistry, 2012, 42 (10): 1493- 1493
[12]   PATON R S, MASERAS F Gold(I)-catalyzed intermolecular hydroalkoxylation of allenes: a DFT study[J]. Organic Letters, 2009, 11 (11): 2237- 2240
doi: 10.1021/ol9004646
[13]   SHENG J, VANNELA R, RITTMANNN B E, et al Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803[J]. Bioresource Technology, 2011, 102 (2): 1697- 1703
doi: 10.1016/j.biortech.2010.08.007
[14]   ZANUTTINI M S, PERALTA M A, QUERINI C A, et al Deoxygenation of m-cresol: deactivation and regeneration of Pt/γ-Al2O3 catalysts [J]. Industrial and Engineering Chemistry Research, 2015, 54 (18): 4929- 4939
doi: 10.1021/acs.iecr.5b00305
[1] LUO Long-zao, SHAO Yu, TIAN Guang-ming. Ammonia stripping of piggery wastewater for microalgae culturing[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 2055-2060.
[2] WANG Gang, ZHENG Hai feng, YIN Hong, YUAN Shen feng, CHEN Zhi rong. Pyrolysis of 1-chloro-1,1 difluoroethane to vinylidene fluoride[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1812-1816.
[3] CHENG Jun, ZHUANG Liang, HUANG Yun, SUN Jing, ZHOU Jun-hu, CEN Ke-fa. Flow field optimization and flashing light effect of flat plate photobioreactor for microalgae growth[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(11): 1958-1963.
[4] LIU Bing-hui, CHEN Zhi-rong, YIN Hong, YUAN Shen-feng. Study on isobutene oligomerization[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 188-192.