Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 228-233    DOI: 10.3785/j.issn.1008-973X.2019.02.004
Energy Engineering     
Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification
Lei-qing HU(),Jun CHENG*(),Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(836KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Polyvinyl pyrrolidone (PVP) with high polarity was adopted to modify the surface of PDMS layer supported on polyacrylonitrile (PAN) hollow fiber, in order to improve the polarity and hydrophily of PDMS layer surface and ensure the minimum negative effect on gas permeability. The employment of PVP was to enhance the interfacial cohesion of polydimethylsiloxane (PDMS) gutter layer and polar selective layer in gas separation composite membrane. X-ray photoelectron spectroscopy (XPS) was utilized to prove that PVP could be grafted to PDMS layer and modify its surface by dip-coating, and the grafting quality and modification of PVP increased and enhanced respectively with the increase of coating time. Results showed that the crosslinker 1,3,5-Benzenetricarbonyl trichloride (TMC) could improve the function of PVP grafting modification, and the surfacewater contact angel decreased to 21.1°, which meant that the surface polarity and hydrophily of PDMS layer were obviously improved and the PDMS layer and polar selective layer were tightly combined. In addition, with the increase of molar ratio of TMC/PDMS, CO2/H2, CO2/CH4 and CO2/N2 selectivity decreased gradually by PVP modification, peaking at 3.9, 3.8 and 11.8, respectively.



Key wordsmembrane      gas separation      surface modification      permeability      polarity     
Received: 25 January 2018      Published: 21 February 2019
CLC:  X 511  
Corresponding Authors: Jun CHENG     E-mail: leiqinghu@zju.edu.cn;juncheng@zju.edu.cn
Cite this article:

Lei-qing HU,Jun CHENG,Ya-li WANG,Jian-zhong LIU,Jun-hu ZHOU,Ke-fa CEN. Improvement on surface hydrophily of hollow fiber-supported PDMS gas separation membrane by PVP modification. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 228-233.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/228


PVP改性PDMS/PAN中空纤维复合膜提升表面亲水性

为了改善气体分离复合膜中聚二甲基硅氧烷(PDMS)过渡层与极性分离层的界面结合,利用高极性的聚乙烯吡咯烷酮(PVP)修饰聚丙烯腈(PAN)中空纤维支撑的PDMS气体分离膜表面,以提高PDMS表面极性和亲水性并减少对气体渗透速率的不利影响. 利用X射线光电子能谱(XPS)证实利用溶液浸渍法可以将PVP接枝在PDMS表面对其修饰,并且随着浸渍时间的增加,PVP接枝量逐步增加,修饰效果逐渐增强. 实验结果表明,交联剂1,3,5-苯三甲酰氯(TMC)增强了PDMS表面的PVP接枝改性,PVP修饰使PDMS表面的水接触角降低到21.1°,显著提高了PDMS表面亲水性和极性,从而有利于PDMS层和极性分离层的紧密结合. PVP修饰使得CO2对其他气体(H2、CH4、N2)的选择性随TMC/PDMS摩尔比的增加而逐渐降低,气体选择性CO2/H2、CO2/CH4、CO2/N2的最大峰值分别为3.9、3.8、11.8.


关键词: 膜,  气体分离,  表面修饰,  渗透率,  极性 
Fig.1 Material chemical structures and SEM image of PAN hollow fiber
MT/P PVP接枝改性 wB/%
Si N
2∶3 改性前 24.12 2.28
改性后 22.59 3.04
10∶3 改性前 22.64 2.22
改性后 16.32 4.58
18∶3 改性前 21.66 2.03
改性后 14.82 7.70
Tab.1 Variation of mass fraction of special elements on surface of PDMS/PAN hollow fiber composite membrane before and after PVP grafting modification
Fig.2 XPS spectrum of PDMS/PAN hollow fiber composite membrane before and after PVP grafting modification
Fig.3 Water contact angles of PDMS/PAN hollow fiber composite membranes before and after PVP grafting modification under different molar ratios of TMC/PDMS
Fig.4 CO2 permeation rate of PDMS/PAN hollow fiber composite membrane before and after PVP grafting modification under different molar ratios of TMC/PDMS
Fig.5 Selectivities of CO2 to other gases of PDMS/PAN hollow fiber composite membrane before and after PVP grafting modification under different molar ratios of TMC/PDMS
[1]   WANG S F, LI X Q, WU H, et al Advances in high permeability polymer-based membrane materials for CO2 separations [J]. Energy and Environmental Science, 2016, 9 (6): 1863- 1890
doi: 10.1039/C6EE00811A
[2]   LIN H Q, He Z J, Sun Z, et al CO2-selective membranes for hydrogen production and CO2 capture-part II: techno-economic analysis [J]. Journal of Membrane Science, 2015, 493: 794- 806
doi: 10.1016/j.memsci.2015.02.042
[3]   张智恩. CO2在中空纤维膜内的吸收分离性能及其在PVA促进传递膜内的吸附特性[D]. 重庆: 重庆大学, 2015.
ZHANG Zhi-en. CO2 absorption in a hollow fiber membrane contactor and its sorption characteristics in a PVA facilitated transport membrane [D]. Chongqing: Chongqing University, 2015.
[4]   KANG Z X, XUE M, FAN L L, et al Highly selective sieving of small gas molecules by using an ultra-microporous metal-organic framework membrane[J]. Energy and Environmental Science, 2014, 7 (12): 4053- 4060
doi: 10.1039/C4EE02275K
[5]   全帅. CO2捕集用高性能PEO基气体分离膜的制备及性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
QUAN Shuai. Preparation and properties of high performance PEO-based gas separation membranes for CO2 capture [D]. Haerbin: Harbin Institute of Technology, 2015.
[6]   HUDIONO Y C, CARLISLE T K, LAFRATE A L, et al Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation [J]. Journal of Membrane science, 2011, 370 (1/2): 141- 148
[7]   YANG L X, TIAN Z Z, ZHANG X Y, et al Enhanced CO2 selectivities by incorporating CO2-philic PEG-POSS into polymers of intrinsic microporosity membrane [J]. Journal of Membrane Science, 2017, 543: 69- 78
doi: 10.1016/j.memsci.2017.08.050
[8]   BARILLAS M K, ENICK R M, O'BRIEN M, et al The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers [J]. Journal of Membrane Science, 2011, 371 (1/2): 29- 39
[9]   陈可平, 梁丽芸, 谭必恩 亲二氧化碳碳氢聚合物及其应用[J]. 化学进展, 2009, 21 (10): 2199- 2204
CHEN Ke-ping, LIANG Li-yun, TAN Bi-en CO2-philic hydrocarbon polymers and their applications [J]. Progress in Chemistry, 2009, 21 (10): 2199- 2204
[10]   CAR A, STROPNIK C, YAVE W, et al PEG modified poly (amide-b-ethylene oxide) membranes for CO2 separation [J]. Journal of Membrane Science, 2008, 307 (1): 88- 95
doi: 10.1016/j.memsci.2007.09.023
[11]   代岩. 氟化/共聚橡胶态聚合物气体分离膜制备及性能研究 [D]. 大连: 大连理工大学, 2017.
DAI Yan. Preparation and performance of fluorinated/copolymerized rubbery polymer gas separation membrane [D]. Dalian: Dalian University of Technology, 2017.
[12]   QIAO Z H, WANG Z, YUAN S J, et al Preparation and characterization of small molecular amine modified PVAm membranes for CO2/H2 separation [J]. Journal of Membrane Science, 2015, 475: 290- 302
doi: 10.1016/j.memsci.2014.10.034
[13]   王薇, 杜启云 中空纤维复合膜[J]. 高分子通报, 2007, 5: 54- 59
WANG Wei, DU Qi-yun Hollow fiber composite membrane[J]. Polymer Bulletin, 2007, 5: 54- 59
doi: 10.3969/j.issn.1003-3726.2007.05.007
[14]   ZHOU S Y, ZOU X Q, SUN F X, et al Challenging fabrication of hollow ceramic fiber supported Cu3(BTC)2 membrane for hydrogen separation [J]. Journal of Materials Chemistry, 2012, 22 (20): 10322- 10328
doi: 10.1039/c2jm16371c
[15]   CHENG J, HU L Q, JI C F, et al Porous ceramic hollow fiber-supported Pebax/PEGDME composite membrane for CO2 separation from biohythane [J]. RSC Advances, 2015, 5 (74): 60453- 60459
doi: 10.1039/C5RA10619B
[16]   HU L Q, CHENG J, LI Y N, et al In-situ grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO2 separation [J]. Journal of Colloid and Interface Science, 2018, 510: 12- 19
doi: 10.1016/j.jcis.2017.09.048
[17]   CHEN H Z, THONG Z W, LI P, et al High performance composite hollow fiber membranes for CO2/H2 and CO2/N2 separation [J]. International Journal of Hydrogen Energy, 2014, 39 (10): 5043- 5053
doi: 10.1016/j.ijhydene.2014.01.047
[18]   YAVE W, CAR A, WIND J, et al Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO2 capture [J]. Nanotechnology, 2010, 21 (39): 395301
[19]   SHAHSAVAN H, QUINN J, D'EON J, et al Surface modification of polydimethylsiloxane elastomer for stable hydrophilicity, optical transparency and film lubrication[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482: 267- 275
doi: 10.1016/j.colsurfa.2015.05.024
[20]   AMIRILARGANI M, SADRZADEH M, SUDHOLTER E J R, et al Surface modification methods of organic solvent nanofiltration membranes[J]. Chemical Engineering Journal, 2016, 289: 562- 582
doi: 10.1016/j.cej.2015.12.062
[21]   XIONG X H, WU Z Q, PAN J J, et al A facile approach to modify poly (dimethylsiloxane) surfaces via visible light-induced grafting polymerization[J]. Journal of Materials Chemistry B, 2015, 3 (4): 629- 634
doi: 10.1039/C4TB01600A
[22]   FU Y J, QUI H Z, LIAO K S, et al Effect of uv-ozone treatment on poly (dimethylsiloxane) membranes: surface characterization and gas separation performance[J]. Langmuir, 2010, 26 (6): 4392- 4399
doi: 10.1021/la903445x
[23]   CHEN J T, FU Y J, TUNG K L, et al Surface modification of poly (dimethylsiloxane) by atmospheric pressure high temperature plasma torch to prepare high-performance gas separation membranes[J]. Journal of Membrane Science, 2013, 440: 1- 8
doi: 10.1016/j.memsci.2013.03.058
[24]   WU Y Z, HUANG Y Y, MA H W A facile method for permanent and functional surface modification of poly (dimethylsiloxane)[J]. Journal of American Chemical Society, 2007, 129 (23): 7226- 7227
doi: 10.1021/ja071384x
[25]   CEHN H, ZHANG Z, CHENG Y, et al Protein repellant silicone surfaces by covalent immobilization of poly (ethylene oxide)[J]. Biomaterials, 2005, 26 (15): 2391- 2399
doi: 10.1016/j.biomaterials.2004.07.068
[26]   CHEN H, BROOK M A, SHEARDOWN H Silicone elastomers for reduced protein adsorption[J]. Biomaterials, 2004, 25 (12): 2273- 2282
doi: 10.1016/j.biomaterials.2003.09.023
[27]   毕秋艳, 田野, 李倩, 等 PVDF中空纤维膜改性研究(1)交联PVP制备亲水化PVDF中空纤维膜[J]. 膜科学与技术, 2012, 32 (6): 22- 27
BI Qiu-yan, TIAN Ye, LI Qian, et al Study on the modification of PVDF membrane (1) preparation of hydrophilic PVDF hollow fiber membrane with PVP via cross-linking reaction[J]. Membrane Science and Technology, 2012, 32 (6): 22- 27
doi: 10.3969/j.issn.1007-8924.2012.06.004
[28]   LIN H Q, VAN WAGNER E, FREEMAN B D, et al Plasticization-enhanced hydrogen purification using polymeric membranes[J]. Science, 2006, 311 (5761): 639- 642
doi: 10.1126/science.1118079
[29]   PUTHIARA J P, LEE Y R, AHN W S Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption [J]. Chemical Engineering Journal, 2017, 319: 65- 74
doi: 10.1016/j.cej.2017.03.001
[1] Yong YAO,Zhen-jun YANG,Qi ZHANG. Experiment research on improving interface performance of steel fiber and mortal by silane coatings[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 1-9.
[2] Ying-ying WEI,Dong-yue JIANG,Qing-teng FU,Fei GUO. Behaviors of aerosol oil droplets on modified PAN fibrous webs[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 196-201.
[3] Wei-guo JIAO,Liang-tong ZHANG,Yong-xin JI,Ming-wei HE. Analysis on long-term performance of capillary-barrier cover with unsaturated drainage layer[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1101-1109.
[4] Qi-xiang LIAN,Zhi-ye DU,Shuo JIN,Zhi-fei YANG,Guo-dong HUANG,Jiang-jun RUAN. Study of transient electric field of oil-paper insulation with transient upstream finite element method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 399-406.
[5] Liang-gui YU,Jian ZHOU,Xiao-gui WEN,Jie XU,Ling-hui LUO. Factors influencing permeability anisotropy of remolded kaolin[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 275-283.
[6] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[7] WU Ya-jun, GU Sai-shuai, QIANG Xiao-bing, HUANG Wei-jun, LU Li-hai, LUO Jia-cheng. Experimental study on ultra-soft soil reinforced by vacuum preloading with flocculation based on skeleton construction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 735-743.
[8] LV Hua-bin, ZHANG Yi-ping, YI Li-da. Newly developed multifunction device for consolidation, permeability and gas-injection tests[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1278-1283.
[9] PAN Qian, CHEN Yun min, LI Yu chao, WEN Yi duo. Hydraulic conductivity of bentonite filter cake and its impact on permeability of cutoff walls[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 231-237.
[10] ZOU Wei-lie, HE Yang, ZHANG Feng-De, WANG Dong-xing, WANG Shuai, WANG Yuan-ming. Experimental study on unsaturated permeability characteristics of solidified sediment stabilized with cement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2182-2188.
[11] ZENG Xing, ZHAN Liang tong, ZHONG xiao le, CHEN Yun min. Similarity of centrifuge modeling of chloride dispersion in low permeability clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 241-249.
[12] WANG Zhen, ZHAO Yang, YANG Xue-lin.
Analysis of buckling behavior of planar membrane structures based on vector form intrinsic finite element
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1116-1122.
[13] CHEN Yu-feng, CHEN Wu-jun, QIU Zhen-yu, ZHAO Bin. Effects of air on modal behavior of pre-stressed membrane structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1123-1127.
[14] CHEN Min, ZHU Fan-wei, WU Ming-hui, YING Jing. Survey of opinion mining[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1461-1472.
[15] CHEN Min, ZHU Fan-wei, WU Ming-hui, YING Jing. Survey of opinion mining[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 0-05.