Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2496-2506    DOI: 10.3785/j.issn.1008-973X.2022.12.019
    
Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter
Dong-jiao WANG(),Chang-run CHEN,Kun LIU*(),Shou-qiang QIU
School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
Download: HTML     PDF(1845KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore parametrically excitation motions of wave energy converter and its influence on wave energy capture capability, both the frequency domain and time domain simulation models of a multiple degrees of freedom wave energy converter with a vertical axis of symmetry were established based on the potential flow theory. A vertical power take-off (PTO) mechanism was installed inside PTO pipe, allowing a floating buoy to slide along the pipe under wave action. The pitching and rolling articulated shafts are connected with the PTO mechanism respectively, and the corresponding PTO damping torque is proportional to the angular speed of pitching and rolling. Setting damping force of vertical PTO is proportional to the sliding speed of the floating buoy along the PTO pipe, in order to assess the occurrence of large amplitude parametric resonance in the time domain model, when the vertical PTO force is decomposed into vertical and horizontal directions, the nonlinear term is retained, while the nonlinear term was ignored in the frequency domain model. Results show that the parametrically excitation motions are mainly caused by vertical PTO damping force. The wave energy captured by the vertical PTO will be reduced due to occurrence of parametrically excited motions, and a period range of the parametrically excitation motions will become widen with the increase of wave height and vertical PTO damping coefficient. In the following sea waves, both the vertical and pitch PTO were connected with PTO damping, if the damping torque coefficient of pitch PTO is small, then the parametric pitching and rolling occur together. On the contrary, if the pitch PTO damping is large the parametric pitching can be suppressed, but large amplitude parametric rolling will occur. Therefore, in order to completely suppress the parametric resonance of the converter, both pitch and roll PTO mechanisms need to set a certain mount of PTO damping.



Key wordsmultiple degrees of freedom      wave energy converter      parametric rolling      parametric pitching      parametric excitation      numerical simulation     
Received: 30 December 2021      Published: 03 January 2023
CLC:  P 743.2  
Fund:  国家重点研发计划项目(2018YFB1501904);国家自然科学基金资助项目(51809096);广东省自然科学基金资助项目(2021A1515012059)
Corresponding Authors: Kun LIU     E-mail: djwang@scut.edu.cn;liukun86@scut.edu.cn
Cite this article:

Dong-jiao WANG,Chang-run CHEN,Kun LIU,Shou-qiang QIU. Investigation on parametrically excited motions of multiple degrees of freedom wave energy converter. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2496-2506.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.019     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2496


多自由度波浪能装置参数激励运动研究

为了研究多自由度波浪能装置的参数激励运动及其对波能俘获能力的影响,利用势流理论建立多自由度轴对称型波浪能装置的频域和时域仿真模型,将垂向动力输出(PTO)机构安装在PTO管内,使浮体在波浪作用下沿管滑动. 纵、横摇铰接轴分别连接PTO机构,PTO阻尼力矩与纵、横摇角速度成正比. 设垂向PTO阻尼力与浮体沿管滑动速度成正比,为了评估参数激励运动,仅在时域模型中将垂向PTO阻尼力分解到垂向和水平方向时保留非线性项. 结果表明,垂向PTO阻尼力是装置产生参数激励运动的主要原因. 产生参数激励运动时,垂向PTO俘获的波浪能降低,参数激励运动的周期范围随波高、垂向PTO阻尼系数的增大而变宽. 随浪工况,垂向和纵摇PTO均连接 PTO阻尼时,若纵摇PTO阻尼力矩系数较小,则参数纵摇和参数横摇同时发生;反之,若纵摇阻尼力矩系数较大,参数纵摇受抑制,但会产生大幅值参数横摇;若要完全抑制装置的参数共振,纵摇和横摇PTO均须设置适当大小的PTO阻尼.


关键词: 多自由度,  波浪能装置,  参数横摇,  参数纵摇,  参数激励,  数值模拟 
Fig.1 Diagram and coordinate systems of multiple degrees of freedom wave energy converter with axial symmetry
Fig.2 Size of floating buoy model and calculation model
Fig.3 Effect of vertical power take-off damping coefficient on motion response of converter
Fig.4 Effect of vertical power take-off damping coefficient on output power and wave energy capture width ratio of vertical power take-off mechanism
Fig.5 Effect of wave height on motion response of converter
Fig.6 Effect of wave height on output power and wave energy capture width ratio of vertical power take-off mechanism
Fig.7 
Fig.7 Effect of pitch power take-off damping on motion response of converter
Fig.8 Effect of pitch power take-off damping on output power and wave energy capture width ratio of vertical power take-off mechanism
Fig.9 Effect of pitch power take-off damping on output power and wave energy capture width ratio of pitch power take-off mechanism
Fig.10 Effect of pitch power take-off damping on total output power and total wave energy capture width ratio
Fig.11 Total output power and total wave energy capture width ratio after parametric resonance suppression
[1]   FRANCE W N, LEVADOU M, TREAKLE T W, et al An investigation of head-sea parametric rolling and its influence on container lashing systems[J]. Marine Technology and SNAME News, 2003, 40 (1): 1- 19
doi: 10.5957/mt1.2003.40.1.1
[2]   ÜÇER E, SÖYLEMEZ M Stochastic rolling motion of ships in following seas[J]. Ocean Engineering, 2011, 38 (8/9): 1001- 1006
doi: 10.1016/j.oceaneng.2011.03.008
[3]   储纪龙, 吴乘胜, 鲁江, 等 规则迎浪中船舶参数横摇的三维时域预报方法研究[J]. 船舶力学, 2016, 20 (12): 1513- 1522
CHU Ji-long, WU Cheng-sheng, LU Jiang, et al Study on a 3D time-domain method to predict parametric rolling of a ship in regular head seas[J]. Journal of Ship Mechanics, 2016, 20 (12): 1513- 1522
doi: 10.3969/j.issn.1007-7294.2016.12.002
[4]   MA S, GE W P, ERTEKIN R C, et al Experimental and numerical investigations of ship parametric rolling in regular head waves[J]. China Ocean Engineering, 2018, 32 (4): 431- 442
doi: 10.1007/s13344-018-0045-6
[5]   李红霞, 鲁江, 顾民, 等 斜浪中参强激励横摇运动的数值模拟与解析分析[J]. 中国造船, 2015, 56 (Suppl.1): 113- 119
LI Hong-xia, LU Jiang, GU Min, et al Numerical and analytical research on forcedly-parametrically excited rolling of ships in oblique seas[J]. Shipbuilding of China, 2015, 56 (Suppl.1): 113- 119
doi: 10.3969/j.issn.1000-4882.2015.z1.016
[6]   YU L, TAGUCHI K, KENTA A, et al Model experiments on the early detection and rudder stabilization of KCS parametric roll in head waves[J]. Journal of Marine Science of Technology, 2018, 23 (1): 141- 163
doi: 10.1007/s00773-017-0463-9
[7]   LIU L, CHEN M, WANG X, et al CFD prediction of full-scale ship parametric roll in head wave[J]. Ocean Engineering, 2021, 233: 109180
doi: 10.1016/j.oceaneng.2021.109180
[8]   GHAMARI I, GRECO M, FALTINSEN O M, et al Numerical and experimental study on the parametric roll resonance for a fishing vessel with and without forward speed[J]. Applied Ocean Research, 2020, 101: 102272
doi: 10.1016/j.apor.2020.102272
[9]   YANG H Z, XU P J Parametric resonance analyses for spar platform in irregular waves[J]. China Ocean Engineering, 2018, 32 (2): 236- 244
doi: 10.1007/s13344-018-0025-x
[10]   毛欢, 杨和振 深吃水半潜式平台参数共振研究[J]. 海洋工程, 2016, 34 (1): 18- 24
MAO Huan, YANG He-zhen Study on parametric resonance of a deep draft semi-submersible platform[J]. The Ocean Engineering, 2016, 34 (1): 18- 24
doi: 10.16483/j.issn.1005-9865.2016.01.003
[11]   YANG M, TENG B, NING D, et al Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain[J]. Ocean Engineering, 2012, 39: 72- 87
doi: 10.1016/j.oceaneng.2011.11.002
[12]   YANG H Z, XU P J Effect of hull geometry on parametric resonances of spar in irregular waves[J]. Ocean Engineering, 2015, 99: 14- 22
doi: 10.1016/j.oceaneng.2015.03.006
[13]   JANG H K, KIM M H Mathieu instability of Arctic spar by nonlinear time-domain simulations[J]. Ocean Engineering, 2019, 176: 31- 45
doi: 10.1016/j.oceaneng.2019.02.029
[14]   ZABIHI M, MAZAHERI S, NAMIN M M Experimental hydrodynamic investigation of a fixed offshore oscillating water column device[J]. Applied Ocean Research, 2019, 85: 20- 33
doi: 10.1016/j.apor.2019.01.036
[15]   CORREIA DA FONSECA F X, GOMES R P F, HENRIQUES J C C, et al Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: motions and mooring forces[J]. Energy, 2016, 112: 1207- 1218
doi: 10.1016/j.energy.2016.07.007
[16]   WU B J, CHEN T X, JIANG J Q, et al Economic assessment of wave power boat based on the performance of “Mighty Whale” and BBDB[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 946- 953
doi: 10.1016/j.rser.2017.08.051
[17]   吴明东, 盛松伟, 张亚群, 等 海洋波浪能浮标发展现状及前景[J]. 新能源进展, 2021, 9 (1): 42- 47
WU Ming-dong, SHENG Song-wei, ZHANG Ya-qun, et al Development status and prospect of ocean wave energy buoy[J]. Advances in New and Renewable Energy, 2021, 9 (1): 42- 47
[18]   GOMES R P F, HENRIQUES J C C, GATO L M C, et al Time-domain simulation of a slack-moored floating oscillating water column and validation with physical model tests[J]. Renewable Energy, 2020, 149: 165- 180
doi: 10.1016/j.renene.2019.11.159
[19]   GIORGI G, GOMES R P F, HENRIQUES J C C, et al Detecting parametric resonance in a floating oscillating water column device for wave energy conversion: numerical simulations and validation with physical model tests[J]. Applied Energy, 2020, 276: 115421
doi: 10.1016/j.apenergy.2020.115421
[20]   KALIDOSS S, BANERJEE A Site-specific modeling of self-reacting point absorber in real wave spectrum[J]. Ocean Engineering, 2021, 238: 109736
doi: 10.1016/j.oceaneng.2021.109736
[21]   LI X F, DILLON M, JIANG B X, et al Analysis and wave tank verification of the performance of point absorber WECs with different configurations[J]. IET Renewable Power Generation, 2021, 15 (14): 3309- 3318
doi: 10.1049/rpg2.12253
[22]   PASTER J, LIU Y C Power absorption modeling and optimization of a point absorbing wave energy converter using numerical method[J]. Journal of Energy Resources Technology, 2014, 136: 021207
doi: 10.1115/1.4027409
[23]   TARRANT K, MESKELL C Investigation on parametrically excited motions of point absorbers in regular waves[J]. Ocean Engineering, 2016, 111: 67- 81
doi: 10.1016/j.oceaneng.2015.10.041
[24]   SHI H, HUANG S, CAO F Hydrodynamic performance and power absorption of a multi-freedom buoy wave energy device[J]. Ocean Engineering, 2019, 172: 541- 549
doi: 10.1016/j.oceaneng.2018.12.005
[25]   BERENJKOOB M N, GHIASI M, SOARES C G Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion[J]. Energy, 2021, 214: 118998
doi: 10.1016/j.energy.2020.118998
[1] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[2] Jun SHI,Ying-ning QIU,Yi ZHOU. Direct numerical simulation of temporally evolving fractal-generated turbulence[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1606-1621.
[3] Gen LI,Tong-chun HAN,Jun-yang WU,Yu ZHANG. Coupled analysis on surface runoff and soil water movement by finite volume method[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 947-955.
[4] Meng-fan LIU,Gang-feng WU,Ke-feng ZHANG,Ping DONG. 2D non-cohesive earthen embankment breach model based on linear erosion formula[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 569-578.
[5] Shuai-ling GAO,Jun-qiang XIA,Bo-liang DONG,Mei-rong ZHOU,Jing-ming HOU. Mathematical model for urban flooding with effect of drainage of street inlets[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 590-597.
[6] Yi-cun WANG,Jiang-kuan XING,Kun LUO,Hai-ou WANG,Jian-ren FAN. Solving combustion chemical differential equations via physics-informed neural network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2084-2092.
[7] Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.
[8] Jia-hao REN,Hai-ou WANG,Jiang-kuan XING,Kun LUO,Jian-ren FAN. Lower-dimensional approximation models of tangential strain rate of turbulent flames[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1128-1134.
[9] Meng-ting YU,Ying-ping WANG,Chu-qi SU,Qi TAO,Jian-peng SHI. Research on fuel economy of car trailing semitrailer in platoon[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 455-461.
[10] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[11] Chao-feng ZENG,Shuo WANG,Zhi-cheng YUAN,Xiu-li XUE. Characteristics of ground deformation induced by pre-excavation dewatering considering blocking effect of adjacent structure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 338-347.
[12] Wei-guo ZHAO,Jia-jia LU,Fu-rong ZHAO. Cavitation control of centrifugal pump based on gap jet principle[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1785-1794.
[13] Song-song YANG,Mei WANG,Jian-an DU,Yong GUO,Yan GEN. Influence of construction sequence of pipe jacking by pipe-roof pre-construction method on ground surface settlement[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1706-1714.
[14] Ya-bo YU,Ya-dong DENG. Hydrogen leakage and diffusion of high voltage cabin of fuel cell bus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 381-388.
[15] Zhong YUN,Meng WEN,Zi-rong LUO,Long CHEN. Design and plunge-diving analysis of underwater-aerial transmedia vehicle of bionic kingfisher[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 407-415.