Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (12): 2487-2495    DOI: 10.3785/j.issn.1008-973X.2022.12.018
    
Effects of spring stiffness on hydrodynamics of nested oscillating water column wave energy device
Pin-jie WANG(),Zheng-zhi DENG*(),Xi-zeng ZHAO
Ocean College, Zhejiang University, Zhoushan 316021, China
Download: HTML     PDF(2366KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A heave-only oscillating water column (OWC) wave energy device integrated in box-type breakwater was proposed. Using the open-source computational fluid dynamics platform OpenFOAM and toolbox waves2foam, the energy conversion efficiency and hydrodynamic properties of the wave energy device were investigated numerically. Fluid volume method (VOF) was used to capture gas-liquid interface and Rigid-Body Dynamic grid technology was employed to solve the heave motion. The effects of vertical linear spring restraints (expressed by dimensionless spring stiffness) on the wave energy conversion efficiency, reflection coefficient, transmission coefficient, energy dissipation coefficient, relative pressure drop, effective relative oscillation amplitude and phase difference of the OWC wave energy device under different incident wave frequencies were explored. Results show that the proper heave motion of the structure is conducive to improving the wave energy conversion efficiency of the OWC device at a specific frequency range. The motion phase difference between the oscillating water column and the structure is the key factor to determine the energy conversion efficiency. It is feasible to improve the wave energy conversion efficiency by controlling the phase difference with adjusting the heave motion of the structure.



Key wordswave energy      OpenFOAM      oscillation water column (OWC)      wave energy conversion efficiency      box-type breakwater     
Received: 22 December 2021      Published: 03 January 2023
CLC:  P 743.2  
Fund:  浙江省自然科学基金-水利联合基金重大项目(LZJWD22E090002)
Corresponding Authors: Zheng-zhi DENG     E-mail: opinkwang@foxmail.com;zzdeng@zju.edu.cn
Cite this article:

Pin-jie WANG,Zheng-zhi DENG,Xi-zeng ZHAO. Effects of spring stiffness on hydrodynamics of nested oscillating water column wave energy device. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2487-2495.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.12.018     OR     https://www.zjujournals.com/eng/Y2022/V56/I12/2487


弹簧刚度对嵌入式振荡水柱波能装置水动力性能的影响

提出嵌入方箱式防波堤的垂荡式振荡水柱(OWC)波能装置,利用开源计算流体动力学库OpenFOAM及工具箱waves2foam,对该波能装置的能量转换效率和水动力特性开展数值研究. 采用流体体积法(VOF)捕捉气液界面,利用Rigid-Body Dynamic网格技术求解垂荡运动. 在不同入射波频下,探究垂直线性弹簧约束(用无量纲弹簧刚度表示)对OWC波能装置的波能转换效率、反射系数、透射系数、能量耗散系数、相对压降、有效相对振荡幅度和相位差等的影响. 结果表明,结构物适当的垂荡运动有利于提升OWC装置在特定频率条件下的波能转换效率;振荡水柱和结构物间的运动相位差是决定能量转换效率的关键因素;为了提升能量转换效率,调节结构物的垂荡运动来控制相位差的措施是可行的.


关键词: 波浪能,  OpenFOAM,  振荡水柱 (OWC),  波能转换效率,  方箱式防波堤 
Fig.1 Sketch of numerical wave tank for heave-only oscillating water column device
Fig.2 Grid diagram of three schemes
Fig.3 Numerical convergence results of water surface elevation and pressure in chamber under different grids different grids
Fig.4 Ratio of displacement of cylinder to centroid height versus non-dimensional time parameter
Fig.5 Ratio of oscillation amplitude of box to incident wave amplitude versue non-dimensional frequency parameter
Fig.6 Comparison of wave energy conversion efficiency under different solvers
Fig.7 Effects of non-dimensional spring coefficients on energy conversion efficiency
Fig.8 Effects of non-dimensional spring coefficients on reflection coefficient
Fig.9 Effects of non-dimensional spring coefficients on transmission coefficient
Fig.10 Effects of non-dimensional spring coefficients on energy dissipation coefficient
Fig.11 Effects of non-dimensional spring coefficients on relative pressure drop
Fig.12 Effects of non-dimensional spring coefficients on different relative oscillation amplitude
Fig.13 Effects of non-dimensional spring coefficients on absolute value of phase difference
[1]   HEATH T V A review of oscillating water columns[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370: 235- 245
[2]   EVANS D V A theory for wave-power absorption by oscillating bodies[J]. Journal of Fluid Mechanics, 1976, 90 (2): 337- 362
[3]   EVANS D V Wave-power absorption by systems of oscillating surface pressure distributions[J]. Journal of Fluid Mechanics, 1982, 114: 481- 499
[4]   DENG Z, HUANG Z, LAW A W K Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube-sector-shaped structure[J]. Applied Ocean Research, 2013, 42: 114- 123
[5]   DENG Z, HUANG Z, LAW A W K Wave power extraction from a bottom-mounted oscillating water column converter with a V-shaped channel[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2014, 470: 20140074
doi: 10.1098/rspa.2014.0074
[6]   ASHLIN S J, SUNDAR V, SANNASIRAJ S A Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics[J]. Renewable Energy, 2016, 96: 341- 353
doi: 10.1016/j.renene.2016.04.091
[7]   VYZIKAS T, DESHOULIÈRES S, BARTON M, et al Experimental investigation of different geometries of fixed oscillating water column devices[J]. Renewable Energy, 2017, 104: 248- 258
doi: 10.1016/j.renene.2016.11.061
[8]   NING D Z, GUO B M, WANG R Q, et al Geometrical investigation of a U-shaped oscillating water column wave energy device[J]. Applied Ocean Research, 2020, 97: 102105
doi: 10.1016/j.apor.2020.102105
[9]   NING D Z, KE S, MAYON R, et al Numerical investigation on hydrodynamic performance of an OWC wave energy device in the stepped bottom[J]. Frontiers in Energy Research, 2019, 7: 152
doi: 10.3389/fenrg.2019.00152
[10]   DENG Z, WANG C, YAO Y, et al Numerical simulation of an oscillating water column device installed over a submerged breakwater[J]. Journal of Marine Science and Technology, 2019, 25: 1- 14
[11]   ZHENG S M, ZHU G X, SIMMONDS D, et al Wave power extraction from a tubular structure integrated oscillating water column[J]. Renewable Energy, 2020, 150: 342- 355
doi: 10.1016/j.renene.2020.01.008
[12]   QU M, YU D Y, DOU Z H, et al Design and experimental study of a pile-based breakwater integrated with OWC chamber[J]. China Ocean Engineering, 2021, 35 (3): 443- 453
doi: 10.1007/s13344-021-0041-0
[13]   TRIVEDI K, KOLEY S Mathematical modeling of breakwater-integrated oscillating water column wave energy converter devices under irregular incident waves[J]. Renewable Energy, 2021, 178: 403- 419
[14]   WANG C, DENG Z, WANG P, et al Wave power extraction from a dual oscillating-water-column system composed of heave-only and onshore units[J]. Energies, 2019, 12: 1742
[15]   郭权势, 邓争志, 王晓亮, 等 垂荡双气室振荡水柱波能装置水动力特性研究[J]. 力学学报, 2021, 53 (9): 2515- 2527
GUO Quan-shi, DENG Zheng-zhi, WANG Xiao-liang, et al Hydrodynamics of a dual-chamber OWC wave energy converter in heaving motion[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (9): 2515- 2527
[16]   任翔, 邓争志, 程鹏达 带纵摇前墙的新型振荡水柱式波浪能装置转换效率以及水动力性能数值研究[J]. 海洋工程, 2021, 39 (5): 66- 77
REN Xiang, DENG Zheng-zhi, CHENG Peng-da Numerical simulation on the extraction efficiency and hydrodynamic performance of an OWC device with a pitching front-wall[J]. The Ocean Energy, 2021, 39 (5): 66- 77
doi: 10.16483/j.issn.1005-9865.2021.05.007
[17]   GUO B, NING D, WANG R, et al Hydrodynamics of an oscillating water column WEC-breakwater integrated system with a pitching front-wall[J]. Renewable Energy, 2021, 176: 67- 80
[18]   DENG Z, WANG P, CHENG P Hydrodynamic performance of an asymmetry OWC device mounted on a box-type breakwater[J]. Frontiers in Marine Science, 2021, 8: 677030
doi: 10.3389/fmars.2021.677030
[19]   DENG Z, WANG C, WANG P, et al Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: experimental and numerical study[J]. Energy, 2019, 187: 115941
doi: 10.1016/j.energy.2019.115941
[20]   HIRT C W, NICHOLS B D Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201- 225
doi: 10.1016/0021-9991(81)90145-5
[21]   DESHPANDE S S, ANUMOLU L, TRUJILLO M F Evaluating the performance of the two-phase flow solver interFoam[J]. Computational Science and Discovery, 2012, 5: 014016
doi: 10.1088/1749-4699/5/1/014016
[22]   WELLER H G, TABOR G, JASAK H, et al A tensorial approach to computational continuum mechanics using object-oriented techniques[J]. Computers in Physics, 1998, 12 (6): 620- 631
doi: 10.1063/1.168744
[23]   RUSCHE, HENRIK. Computational fluid dynamics of dispersed two-phase flows at high phase fractions [D]. London: Imperial College London, 2003.
[24]   JACOBSEN N G, FUHRMAN D R, FREDSØE J A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2011, 70 (9): 1073- 1088
[25]   GODA Y, SUZUKI Y Estimation of incident and reflected waves in random wave experiments[J]. Plos One, 1976, 4 (9): 73- 73
[26]   MASKELL S J, URSELL F The transient motion of a floating body[J]. Journal of Fluid Mechanics, 1970, 44 (2): 303- 313
[27]   ITO S. Study of the transient heave oscillation of a floating cylinder [D]. Cambridge: Massachusetts Institute of Technology, 1977: 19-26.
[28]   BRIOMSMA N, PAULSEN B T, JACOBSEN N G Validation and application of a fully nonlinear numerical wave tank for simulating floating offshore wind turbines[J]. Ocean Engineering, 2018, 147: 647- 658
[29]   MARUO H On the increase of the resistance of a ship in rough seas[J]. Journal of Zosen Kiokai, 1957, 1957 (101): 33- 39
[30]   NOJIRI N, MURAYAMA K A study on the drift force on two-dimensional floating body in regular waves[J]. Transactions of the West-Japan Society of Naval Architects, 1975, 51: 131- 52
[31]   KOO W, KIM M H Freely floating-body simulation by a 2D fully nonlinear numerical wave tank[J]. Ocean Engineering, 2004, 31 (16): 2011- 2046
[32]   LUO Y, WANG Z, PENG G, et al Numerical simulation of a heave-only floating OWC (oscillating water column) device[J]. Energy, 2014, 76: 799- 806
[1] Cong-hao XU,Yu YAO,Ting GUO,Zheng-zhi DENG. Study of flow characteristics around row of oscillating water column pile under regular waves[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1308-1316.
[2] Chen WANG,Zheng-zhi DENG,Da-wei MAO. Hydrodynamic performance of two vertical plates penetrating system mounted over stepped bottom[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 336-346.
[3] Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.
[4] Yong-gang LIN,Jian-qiang XU,Hong-wei LIU,Wei LI. Pressure matching of wave energy device based on digital hydraulic cylinder group[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1892-1897.
[5] JIANG Chang-bo, DENG Ya, YAO Yu, DENG Bin. Numerical analysis of flow characteristics around piles under solitary waves[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1441-1447.