Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 325-335    DOI: 10.3785/j.issn.1008-973X.2019.02.016
Water Resources and Ocean Engineering     
Theoretical and numerical studies of off-shore oscillating water column wave energy device
Hang-hui HU(),Zheng-zhi DENG*(),Yan-ming YAO,Xi-zeng ZHAO
Ocean College, Zhejiang University, Zhoushan 316000, China
Download: HTML     PDF(1986KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The boundary value problem of the interaction between the small amplitude wave and the off-shore oscillating water column (OWC) wave energy devices was solved by means of the matched eigenfunction expansion method based on the potential flow theory. A two-dimensional fully nonlinear wave-OWC numerical model was established by employing the FLUENT software and its associated user-defined function (UDF). The effects of the immersion depth, the width of the chamber, and the thickness of walls on the energy conversion efficiency were examined both in theoretical and numerical manners, and the comparison of the results of these two manners showed a good agreement. The performances of the OWC devices influenced by the incident wave amplitudes were investigated with the help of the numerical model. Results showed that the bandwidth of highly-efficient frequencies narrowed with the increase of the immersion depth, and the peak shifted to the low frequency region. The increase of walls’ thickness resulted in the decrease of energy conversion efficiency in the high frequency region, while having little effect on the low frequency region. The bandwidth of highly-efficient frequencies widened with the increase of the chamber width, and the peak shifted to the low frequency region. In addition, the increase of the incident wave amplitude caused the decrease of the energy conversion efficiency, especially near the resonant frequency.



Key wordsoscillating water column (OWC) wave energy device      computational fluid dynamics      potential flow theory      matched eigenfunction expansion method      wave energy conversion efficiency     
Received: 30 January 2018      Published: 21 February 2019
CLC:  O 352  
Corresponding Authors: Zheng-zhi DENG     E-mail: hanghuihu@zju.edu.cn;zzdeng@zju.edu.cn
Cite this article:

Hang-hui HU,Zheng-zhi DENG,Yan-ming YAO,Xi-zeng ZHAO. Theoretical and numerical studies of off-shore oscillating water column wave energy device. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 325-335.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.016     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/325


离岸式振荡水柱波能装置的理论及数值研究

基于势流理论, 利用匹配特征函数展开法,求解微幅波与离岸式振荡水柱(OWC)波能转换装置相互作用的边界值问题. 借助FLUENT软件及其用户自定义函数(UDF),建立二维完全非线性波-OWC装置数值模型. 从理论和数值上分析OWC装置吃水深度、气室宽度以及墙体厚度对波能转换效率的影响,解析解和数值结果吻合较好.依靠数值模型,模拟波高变化对OWC装置工作效率的影响. 研究表明:OWC装置吃水深度的增加会导致高效频率带宽变窄,峰值向低频区移动;墙体厚度的增加会导致高频区波能转换效率下降,但对低频区影响较小;气室宽度的增大会导致高效频率带宽变宽,峰值向低频区移动;波高的增大会导致波能转换效率下降,在共振频率附近尤为明显.


关键词: 振荡水柱波能转换装置,  计算流体动力学,  势流理论,  匹配特征函数展开法,  波能转换效率 
Fig.1 Sketch of off-shore oscillating water column wave enery device
Fig.2 Time history curves of incident wave energy flux per unit width
Fig.3 Wave energy curves captured at PTO
Fig.4 Sketch of numerical tank model for wave-oscillating water column wave enery device
波况 λ/m T/s 波况 λ/m T/s
1 9.8 2.51 6 18.9 3.48
2 11.7 2.74 7 20.0 3.59
3 12.9 2.88 8 21.4 3.71
4 14.0 3.00 9 23.8 3.92
5 16.5 3.26 10 33.7 4.76
Tab.1 Different incident wave conditions of numerical validation for wave energy conversion
Fig.5 Water surface fluctuation and flow field inside and near oscillating water column wave energy device chamber
Fig.6 Locations of three water level monitoring points
Fig.8 Static pressure within oscillating water column wave energy device chamber and outlet velocity for PTO
Fig.7 Time series of surface elevations before, inside and after oscillating water column wave energy device chamber
Fig.9 Time history curves of pressure within oscillating water column wave energy device chamber, outlet velocity for PTO and absorbed wave power
Fig.10 Energy conversion efficiency versus different incident wave frequencies in oscillating water column wave energy device
Fig.11 Reflection and transmission coefficients versus different incident wave frequencies
Fig.12 Proportion of energy of each component versus different incident wave frequencies
Fig.13 Wave energy conversion efficiency versus different incident wave frequencies for different immersion depths
Fig.14 Wave energy conversion efficiency versus different incident wave frequencies for different thickness of walls
Fig.15 Wave energy conversion efficiency versus different incident wave frequencies for different chamber widths
Fig.16 Wave energy conversion efficiency versus different incident wave frequencies for different incident wave amplitudes
Fig.17 Flow fields and vorticities near bottom of oscillating water column wave energy device for different incident wave amplitudes
Fig.18 Spectra for different incident wave amplitudes
[1]   王传崑, 卢苇. 海洋能资源分析方法及储量评估[M]. 北京: 海洋出版社, 2009: 1-17.
[2]   EVANS D V The oscillating water column wave-energy device[J]. IMA Journal of Applied Mathematics, 1978, 22 (4): 423- 433
doi: 10.1093/imamat/22.4.423
[3]   FALNES J Radiation impedance matrix and optimum power absorption for interacting oscillators in surface waves[J]. Applied Ocean Research, 1980, 2 (2): 75- 80
doi: 10.1016/0141-1187(80)90032-2
[4]   EVANS D V Wave-power absorption by systems of oscillating surface pressure distributions[J]. Journal of Fluid Mechanics, 1982, 114 (1): 481- 499
[5]   EVANS D V, PORTER R Hydrodynamic characteristics of an oscillating water column device[J]. Applied Ocean Research, 1995, 17 (3): 155- 164
doi: 10.1016/0141-1187(95)00008-9
[6]   AMBLI N, BONKE K, MALMO O, et al. The Kvaerner multi resonant OWC [C]// Proceedings of the 2nd International Symposium on Wave Energy Utilization. Norway: [s. n. ], 1982: 275-295.
[7]   梁贤光, 孙培亚, 游亚戈 汕尾100 kW波力电站气室模型性能试验[J]. 海洋工程, 2003, 21 (1): 113- 116
LIANG Xian-guang, SUN Pei-ya, YOU Ya-ge Performance experiment of Shanwei 100 kW wave power station’s air-room[J]. The Ocean Engineering, 2003, 21 (1): 113- 116
doi: 10.3969/j.issn.1005-9865.2003.01.020
[8]   史宏达, 杨国华, 刘臻, 等 新型沉箱防波堤兼作岸式OWC波能装置的设计及稳定性研究[J]. 中国海洋大学学报: 自然科学版, 2010, 40 (9): 142- 146
SHI Hong-da, YANG Guo-hua, LIU Zhen, et al Study on new caisson breakwater as OWC[J]. Periodical of Ocean University of China, 2010, 40 (9): 142- 146
[9]   史宏达, 焦建辉, 刘臻, 等. 不规则波作用下OWC沉箱气室捕能效果研究[J]. 中国海洋大学学报: 自然科学版, 2012, 42(增1): 147-154.
SHI Hong-da, JIAO Jian-hui, LIU Zhen, et al. Study on capture effect of air chamber of caisson breakwater as OWC under irregular waves [J]. Periodical of Ocean University of China, 2012, 42(Suppl. 1): 147-154.
[10]   YOU Y Hydrodynamic analysis on wave power devices in near-shore zones[J]. Journal of Hydrodynamic, Series B, 1993, 5 (3): 42- 54
[11]   史宏达, 李海锋, 刘臻 基于VOF模型的OWC气室波浪场数值分析[J]. 中国海洋大学学报: 自然科学版, 2009, 39 (3): 526- 530
SHI Hong-da, LI Hai-feng, LIU Zhen Numerical analysis of wave field in OWC chamber using VOF model[J]. Periodical of Ocean University of China, 2009, 39 (3): 526- 530
[12]   宁德志, 石进, 滕斌, 等 岸式振荡水柱波能转换装置的数值模拟[J]. 哈尔滨工程大学学报, 2014, (7): 789- 794
NING De-zhi, SHI Jin, TENG Bin, et al Numerical simulation of a land-based oscillating water column wave energy conversion device[J]. Journal of Harbin Engineering University, 2014, (7): 789- 794
[13]   NING D Z, SHI J, ZOU Q P, et al Investigation of hydrodynamic performance of an OWC (oscillating water column) wave energy device using a fully nonlinear HOBEM (higher-order boundary element method)[J]. Energy, 2015, 83: 177- 188
doi: 10.1016/j.energy.2015.02.012
[14]   KAMATH A, BIHS H, ARNTSEN ? A Numerical modeling of power take-off damping in an oscillating water column device[J]. International Journal of Marine Energy, 2015, 10: 1- 16
doi: 10.1016/j.ijome.2015.01.001
[15]   LUO Y, NADER JR, COOPER P, et al Nonlinear 2D analysis of the efficiency of fixed oscillating water column wave energy converters[J]. Renewable Energy, 2014, 64 (2): 255- 265
[16]   WANG R, NING D, ZHANG C, et al Nonlinear and viscous effects on the hydrodynamic performance of a fixed OWC wave energy converter[J]. Coastal Engineering, 2018, 131: 42- 50
doi: 10.1016/j.coastaleng.2017.10.012
[17]   DENG Z, HUANG Z, LAW A W K Wave power extraction by an axisymmetric oscillating-water-column converter supported by a coaxial tube- sector-shaped structure[J]. Applied Ocean Research, 2013, 42 (4): 114- 123
[18]   SARMENTO A J N A, DE O FALCA A F Wave generation by an oscillating surface-pressure and its application in wave-energy extraction[J]. Journal of Fluid Mechanics, 1985, 150: 467- 485
doi: 10.1017/S0022112085000234
[19]   乔方利. 中国区域海洋学: 物理海洋学[M]. 北京: 海洋出版社, 2012: 389-397.
[20]   LUO Y, WANG Z, PENG G, et al Numerical simulation of a heave-only floating OWC (oscillating water column) device[J]. Energy, 2014, 76: 799- 806
doi: 10.1016/j.energy.2014.08.079
[1] Huan-long LIU,Chi-xin XIE,Da-fa LI,Jia-wei WANG. Flow field distribution of splash lubrication of gearbox and churning gear torque loss[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 875-886.
[2] Hua-qing MA,Yong-zhi ZHAO. CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1347-1354.
[3] Shuai ZHENG,Da-peng TAN,Lin LI,Yin-long ZHU. Ultrasonic coupled microreactor CFD-DEM dynamic modeling and regulating method[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1237-1251.
[4] Hao ZHOU,Kun ZHANG,Ya-wei LI,Jia-kai ZHANG. Numerical simulation of fly ash deposition in coal and corn stalk co-combustion with dynamic mesh technique[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1139-1147.
[5] Yong-xiang GAO,Du HONG,You-wei CHENG,Li-jun WANG,Xi LI. Experimental and numerical simulation on sequential three phase jet-loop reactor[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 997-1005.
[6] Yan-ning LU,Hong-tao ZHANG,Yan-wei XU,Yan-qun ZHU,Kai-di WAN,Zhe-ru SHAO,Zhi-hua WANG. Numerical simulation of effects of flue gas recirculation on biomass combustion in grate boiler[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1898-1906.
[7] Shi-tang KE,Wen-lin YU,Lu XU,Ling-yun DU,Wei YU,Qing YANG. Flow fields and aerodynamic loads of wind turbine considering yaw effect under wind and rain interaction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1936-1945.
[8] DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin. Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1811-1820.
[9] ZHANG Xin, ZHANG Tian-hang, HUANG Zhi-yi, ZHANG Chi, KANG Cheng, WU Ke. Local loss and flow characteristic of dividing flow in bifurcated tunnel[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 440-445.
[10] CHEN Wei, QIN Xian-rong, YANG Zhi-gang. Wind load characteristics analysis of mast and jib of tower crane[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2262-2270.
[11] CHEN Wen-zhuo, CHEN Yan, ZHANG Wei-ming, HE Shao-wei, LI Bo, JIANG Jun-ze. Numerical simulation for dynamic air spray painting of arc surfaces[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2406-2413.
[12] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[13] DONG Yong-shen, WANG Ding-biao, XIANG Sa, XIA Chun-jie. Numerical simulation of double-pipe heat exchanger enhanced by oblique helical fins[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 309-314.
[14] HE Fang xiang, ZHAN Shu lin, QIAN Xiao qian, LAI Jun ying. Numerical simulation on insulation of flat roof ventilation layer[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2397-2402.
[15] REN Li-bo, HAN Ji-tian, ZHAO Hong-xia. Numerical simulation of discrete particles in fluidized bed with immersed tube[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 150-156.