Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (8): 1666-1675    DOI: 10.3785/j.issn.1008-973X.2022.08.021
    
Design method of electronic tag based on radio frequency energy acquisition
Gao-ping LIU1(),Zhi-huan SONG2
1. School of Information and Intelligent Engineering, Zhejiang Wanli University, Ningbo 315100, China
2. School of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1656KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

According to the characteristics of energy acquisition applied to tags, a monitoring circuit was added between the energy acquisition module and the tag module, and the cooperative working strategy of energy acquisition and tags was put forward based on the setting of high and low thresholds. The low threshold selection principle is to ensure that the energy storage of the energy storage module can ensure the one-time broadcasting of the tag and prevent the tag from entering the power down state to the maximum extent. The optimal value of energy storage capacitance, minimum and optimal radio frequency (RF) input power in the environment were deduced by starting from the broadcast interval and power required in the tag design goal according to the amount of energy that can be collected in the environment and the change of energy consumption required by the tag in different states. A tag based on RF acquisition was designed by using P2110B and CC2640R2F chip for verification. Test results show that the energy acquisition tag designed by this method can realize the cooperative work of energy acquisition module and tag module. The tag can carry out continuous “sleep and broadcast” cycle when the RF input power is greater than the optimal value. It can effectively prevent the label from falling into “energy deadlock”, and can adaptively switch in different working states.



Key wordstag      radio frequency      energy acquisition      energy deadlock      cooperative work     
Received: 15 March 2022      Published: 30 August 2022
CLC:  TP 23  
Fund:  工业控制技术国家重点实验室(浙江大学)开放课题资助项目(ICT2021B29); 浙江省公益技术研究计划资助项目(LGF19F010002); 宁波市公益类科技计划资助项目(202002N3136)
Cite this article:

Gao-ping LIU,Zhi-huan SONG. Design method of electronic tag based on radio frequency energy acquisition. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1666-1675.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.08.021     OR     https://www.zjujournals.com/eng/Y2022/V56/I8/1666


基于射频能量采集的电子标签设计方法

根据能量采集应用于标签的特点,在能量采集模块与标签模块之间添加监测电路,并在高低2个阈值设置的基础上,提出能量采集与标签协同工作策略,低阈值选取原则是保证储能模块的储能能够保证标签一次广播,最大限度地防止标签进入掉电状态. 从标签设计目标要求的广播间隔与功率出发,根据环境中能够采集到的能量大小与标签不同状态下所需能耗的变化,推导出储能电容最优值、环境中应具备的射频(RF)输入功率最小值与最优值. 利用P2110B与CC2640R2F芯片设计了一个基于射频采集的标签进行验证,测试结果表明:采取该方法设计的能量采集标签可以实现能量采集模块和标签模块协同工作,当射频输入功率大于最优值时,标签能够进行持续的“休眠 ? 广播”循环工作,有效地防止标签陷入“能量死锁”,并可自适应地在不同工作状态下转换.


关键词: 标签,  射频,  能量采集,  能量死锁,  协同 
Fig.1 Tag scheme diagram with energy acquisition and storage module
Fig.2 Schematic diagram of energy storage change under "energy deadlock"
Fig.3 Tag structure block diagram with energy acquisition and monitoring circuit
Fig.4 Schematic diagram of energy storage change after adding monitoring circuit
Fig.5 Schematic diagram of label working state conversion
Fig.6 Schematic diagram of RF energy acquisition circuit
元件 参数 含义 数值
CC2640R2F ${U_0}$/V 工作电压 3.3
${I_{{\text{tleak2}}}}$/μA IO驱动电流 20.0
${I_{{\text{tr}}}}$/mA 广播电流 5.8
${I_{{\text{slp}}}}$/μA 休眠电流 3.0
${I_{{\text{cmp}}}}$/μA COMPB工作电流 0.4
${I_{{\text{init}}}}$/mA 启动电流 2.194
${t_{\text{s}}}$/ms 完成初始化时间 25.0
${t_{{\text{tr}}}}$/ms 广播一帧时间 3.5
P2110B $\eta $/% 能量转换效率 42
$\gamma $/% 电压转换效率 85
477钽电容 ${I_{{\text{cleak1}}}}$/μA 漏电流 28.2
227钽电容 ${I_{{\text{cleak2}}}}$/μA 漏电流 13.9
106钽电容 ${I_{{\text{tleak1}}}}$/μA 漏电流 1.0
其他 ${U_{\text{H}}}$/V 高阈值 1.65
${U_{\text{L}}}$/V 低阈值 1.27
$\alpha $ ${U_{\text{C}}}/{U_0}$ 0.427
Tab.1 Device parameters in test scheme
Fig.7 Thread flow chart in main program callback function
Fig.8 Photo of energy acquisition and label module
Fig.9 Voltage test diagram at tag start-up
Fig.10 Voltage test diagram under various input power conditions
Fig.11 Voltage test diagram during label startup at 570 uf
[1]   GOMEZ C, OLLER J, PARADELLS J Overview and evaluation of bluetooth low energy: an emerging low-power wireless technology[J]. Sensors, 2012, 12 (9): 11734- 11753
doi: 10.3390/s120911734
[2]   陈锐志, 陈亮 基于智能手机的室内定位技术的发展现状和挑战[J]. 测绘学报, 2017, 46 (10): 1316- 1326
CHEN Rui-zhi, CHEN Liang Indoor positioning with smartphones: the state-of-the-art and the challenges[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46 (10): 1316- 1326
doi: 10.11947/j.AGCS.2017.20170383
[3]   Texas Instruments. Blutooth® low energy Beacons[EB/OL]. [2020-10-12]. http://www.ti.com/lit/an/swra475a/swra475a.pdf.
[4]   钟志豪. 基于能量收集和BLE的低功耗有源标签设计[D]. 成都: 电子科技大学, 2016.
ZHONG Zhi-hao. Design of low power active tag based on energy collection and BLE[D]. Chengdu: University of Electronic Science and technology, 2016.
[5]   AHMED A E, ABDULLAH K, HABAEBI M H, et al RF energy harvesting wireless networks: challenges and opportunities[J]. Indonesian Journal of Electrical Engineering and Informatics, 2021, 9 (1): 101- 113
[6]   BAI Y, JANTUNEN H, JUUTI J Energy harvesting research: the road from single source to multisource[J]. Advanced Materials, 2018, 30 (34): 1707271
doi: 10.1002/adma.201707271
[7]   LIU Q, IJNTEMA W, DRIF A, et al. BEH: indoor batteryless BLE Beacons using RF energy harvesting for internet of things [EB/OL]. [2022-03-01]. https://arxiv.org/abs/1911.03381.
[8]   MOHAMAD T, Mohamad T, SAMPE J, et al Architecture of micro energy harvesting using hybrid input of RF, thermal and vibration for semi-active RFID tag[J]. Engineering Journal, 2017, 21 (2): 183- 197
doi: 10.4186/ej.2017.21.2.183
[9]   齐丽晶, 胥佳颖 超级电容的发展与应用[J]. 大学物理实验, 2019, 32 (5): 36- 40
JI Li-jing, XU Jia-ying Development and application of super capacitor[J]. Physical Experiment of College, 2019, 32 (5): 36- 40
doi: 10.14139/j.cnki.cn22-1228.2019.05.010
[10]   Texas Instruments. CC2640R2F Datasheet[EB/OL]. [2022-03-01]. https://www.ti.c-om/cn/lit/ds/symlink/cc2640r2f.pdf.
[11]   Powercast. P2110B datasheet[EB/OL]. [2022- 03-01]. http://www.powercastco.com/documentation/p2110b-module-datasheet.
[12]   Texas Instruments. CC13x0, CC26x0 SimpleLink™ wireless MCU technical reference manual [EB/OL]. [2022-03-01]. https://www.ti.com.cn/cn/lit/ug/swcu117i/ swcu117i.pdf.
[13]   AVX. Standard and low profile Tantalum capacitors [EB/OL]. [2022-03-01]. https://www.kyocera-avx.com/products/niobium/smd-nbo-oxicap/oxicap-nos-series.
[14]   刘政雳, 戴玲, 刘高平 基于NoRTOS框架的蓝牙信标设计与开发[J]. 浙江万里学院学报, 2021, 34 (3): 88- 94
LIU Zheng-li, DAI Ling, LIU Gao-ping Design and development of bluetooth beacon based on NoRTOS framework[J]. Journal of Zhejiang Wanli University, 2021, 34 (3): 88- 94
doi: 10.13777/j.cnki.issn1671-2250.2021.03.015
[15]   Texas Instruments. Code Composer Studio™ integrated development environment[EB/OL]. [2022-03-01]. https://www.ti.com/tool/ccstudio.
[1] Hong-yang LIU,Qiang LUO,Wei-long WANG,Pin-feng LI,Hong-fei MA,Dong-qing ZHANG. Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1504-1513.
[2] Meng-qian CUI,Pei-sheng ZONG,Guo WEI,Ke-ping WANG. Low-power and high-efficiency transmitter based on dual-supply voltage and frequency multiplication technique[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1294-1301.
[3] Qiang BO,Li-fang WANG,Yu-wang ZHANG. Power expansion strategy of IPT system based on separated compensation network[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1257-1266.
[4] Jin-feng WANG,Song-wei YANG,Yang-yang KANG,Hua-wei XIANG. General calculation method for manufacturing parameters of steel box girder in staged construction[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 550-557.
[5] Guo-peng ZHANG,Zi-han LI,Hao WANG,zheng ZHENG. Isolated AC-DC solid state transformer front and rear stages integrated sliding mode control[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 622-630.
[6] Qian LI,Ning LIANG,Wei-qi TONG,Hai-ping Xu,Lin-lin CAO,Da-zhuan WU. Research on flow-induced noise properties of waterjet pump based on cyclostationary method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1660-1667.
[7] Yan-tian XU,Xiao-min HUANG,Hao-ming LI,Zhi-yu WANG,Fa-xin YU. Design of multi chip fractional frequency phase locked loop output signal phase synchronization[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1788-1794.
[8] Qi ZHANG,Hong CHEN,Ji-biao ZHOU,Min ZHANG,Lin GUO,Ren-fa YANG. Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 720-726.
[9] Ke-feng LIU,Jia-bao HE,Jian-xiong XI,Le-nian HE. Digitally controlled active clamp flyback converter with adaptive dead time control[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2365-2372.
[10] Bang-huang CAI,Hui-min SONG,Shan-guang GUO,Hai-deng ZHANG,Jia-ming SHENG. Control effect of radio frequency discharge plasma excitation on shock wave/boundary layer interference[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1839-1848.
[11] Yue WANG,Zhen-bang ZHOU,Yun PENG. Collaborative selective harmonic elimination pulse width modulation for dual-module parallel-connected three-level converters[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1425-1432.
[12] Kai-ming HU,Hua LI. Nonlinear stochastic optimal voltage bounded control for axial compressed beam[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 940-946.
[13] Chen-bin ZHENG,Yong ZHANG,Hang HU,Ying-rui WU,Guang-jing HUANG. Object detection enhanced context model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 529-539.
[14] Hui-fang WANG,Chen-yu ZHANG. Prediction of voltage stability margin in power system based on extreme gradient boosting algorithm[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 606-613.
[15] Ren-yi YI,Yong WANG,Yu-dong XIE,Kai QIAO,Yu-lei ZHANG. No-load voltage of liquid metal magnetohydrodynamic power generator[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1964-1970.