Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (6): 1257-1266    DOI: 10.3785/j.issn.1008-973X.2022.06.025
    
Power expansion strategy of IPT system based on separated compensation network
Qiang BO1,2(),Li-fang WANG1,2,3,*(),Yu-wang ZHANG1,3
1. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Power Electronics and Electric Drives, Chinese Academy of Sciences, Beijing 100190, China
Download: HTML     PDF(2955KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The compensation network of the inductive power transfer (IPT) system was separated and added to each parallel inverter to solve the power expansion and circulating current problems. Firstly, the mathematical models of the IPT system with single-inverter topology and power expansion topology were analyzed. Secondly, the compensation network parameters of each parallel inverter were designed, and the power and efficiency expressions of the power expansion system were also derived. Then, the circulating current of each parallel inverter was analyzed when the drives were asynchronous, and the zero-voltage-switch (ZVS) control strategy was given. Finally, a 1.2 kW IPT system power expansion device based on the separation compensation network was built for experimental verification. Experimental results showed that the ratio of the output power of each parallel inverter was about 1∶2 and all of them achieve ZVS operation, and the overall transmission efficiency from DC to DC of the power expansion system was 92.53% while the amplitude of the circulating current was 0.2 A, which proved the practicality and effectiveness of the proposed power expansion topology.



Key wordsinductive power transfer (IPT)      power expansion      zero-voltage-switch (ZVS)      drive asynchrony      circulating current suppression      parameter design of compensation network     
Received: 03 June 2021      Published: 30 June 2022
CLC:  TM 72  
Fund:  国家重点研发计划资助项目(2018YFB0106300);国家自然科学基金资助项目(51807188);中国科学院战略性先导科技专项(A类)资助项目(XDA22010403)
Corresponding Authors: Li-fang WANG     E-mail: boqiang@mail.iee.ac.cn;wlf@mail.iee.ac.cn
Cite this article:

Qiang BO,Li-fang WANG,Yu-wang ZHANG. Power expansion strategy of IPT system based on separated compensation network. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1257-1266.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.06.025     OR     https://www.zjujournals.com/eng/Y2022/V56/I6/1257


基于分离补偿网络的IPT系统功率扩容策略

将感应电能传输(IPT)系统的补偿网络分离并加入各并联逆变器中,用以解决功率扩容和环流问题.分析采用单逆变器拓扑和功率扩容拓扑的IPT系统数学模型. 设计各并联逆变器的补偿网络参数,推导功率扩容系统的功率与效率表达式. 分析各并联逆变器在驱动不同步时的环流回路,给出零电压开关(ZVS)控制策略. 搭建1.2 kW 基于分离补偿网络的IPT系统功率扩容装置,进行实验验证. 实验结果表明,各并联逆变器的输出功率比约为1∶2,均实现了ZVS,功率扩容系统直流到直流的整体传输效率为92.53%,环流幅值为0.2 A,证明了所提功率扩容拓扑的实用性和有效性.


关键词: 感应电能传输(IPT),  功率扩容,  零电压开关(ZVS),  驱动不同步,  环流抑制,  补偿网络参数设计 
Fig.1 Schematic of IPT system with single inverter
Fig.2 Power expansion topology of IPT system based on separate compensation network
Fig.3 Equivalent circuit of power expansion topology of IPT system
Fig.4 Circulating current caused by asynchronous driving
Fig.5 Control strategy of power expansion topology for IPT system
参数 数值 参数 数值
Udc/V 400 Cp1/nF 18.8
Lp1/μH 78.6 Cs/nF 16
Lp2/μH 78.8 L1/μH 236.7
Lp3/μH 41.5 R1 0.191
Lp4/μH 39.1 L2/μH 224.2
Cp2,1/nF 22.2 R2 0.259
Cp2,2/nF 43.2 M/μH 32.2
Tab.1 Parameter configuration of power expansion topology for 1.2 kW IPT system based on separation compensation network
Fig.6 Power expansion device of IPT system based on separation compensation network
Fig.7 Voltage and current waveforms considering effect of delay angle
Fig.8 Output impedance angles of inverters
Fig.9 Amplitude spectrograms of current for inverters
Fig.10 Experimental waveforms of voltage and current for inverters
Fig.11 Experimental waveforms of voltage and circulating current for inverters
Fig.12 Simulated and experimental values of current ratio and power ratio of inverters
Fig.13 Output power at full load and overall transmission efficiency of DC−DC system
[1]   苏玉刚, 侯信宇, 戴欣 磁耦合无线电能传输系统异物检测技术综述[J]. 中国电机工程学报, 2021, 41 (2): 715- 728
SU Yu-gang, HOU Xin-yu, DAI Xin Review of foreign object detection technology in magnetic coupling wireless power transfer system[J]. Proceedings of the CSEE, 2021, 41 (2): 715- 728
[2]   付丛丛, 李醒飞, 杨少波, 等 海洋浮标感应耦合电能传输系统频率分裂特性及最大功率点分析[J]. 浙江大学学报:工学版, 2020, 54 (3): 475- 482
FU Cong-cong, LI Xing-fei, YANG Shao-bo, et al Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 475- 482
[3]   孙跃, 贾鑫, 唐春森 基于三线圈合成算法的WPT-EV拾取定位技[J]. 浙江大学学报:工学版, 2017, 51 (5): 984- 991
SUN Yue, JIA Xin, TANG Chun-sen Pick-up position detection for WPT-EV based on three-coil synthesis algorithm[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (5): 984- 991
[4]   李砚玲, 杜浩, 何正友 基于双D形正交混合拓扑的感应电能传输系统恒流输出研究[J]. 中国电机工程学报, 2020, 40 (3): 942- 951
LI Yan-ling, DU Hao, HE Zheng-you Research on constant current output of inductive power transfer system with double-D quadrature hybrid topology[J]. Proceedings of the CSEE, 2020, 40 (3): 942- 951
[5]   MACHURA P, SANTIS V D, LI Q Driving range of electric vehicles charged by wireless power transfer[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (6): 5968- 5982
doi: 10.1109/TVT.2020.2984386
[6]   SUN G, MUNEER B, LI Y, et al Ultracompact implantable design with integrated wireless power transfer and RF transmission capabilities[J]. IEEE Transactions on Biomedical Circuits and Systems, 2018, 12 (2): 281- 291
doi: 10.1109/TBCAS.2017.2787649
[7]   YAN Z, SONG B, ZHANG Y, et al A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles[J]. IEEE Transactions on Power Electronics, 2019, 34 (5): 4005- 4008
doi: 10.1109/TPEL.2018.2871316
[8]   王付胜, 郭娟娟, 王文洋, 等 电动汽车无线充电系统实现软开关的参数优化设计方法[J]. 中国电机工程学报, 2019, 39 (Suppl.1): 258- 267
WANG Fu-sheng, GUO Juan-juan, WANG Wen-yang, et al A method of parameter optimization design to achieve ZVS for electric vehicle wireless charging system[J]. Proceedings of the CSEE, 2019, 39 (Suppl.1): 258- 267
[9]   盛况, 任娜, 徐弘毅 碳化硅功率器件技术综述与展望[J]. 中国电机工程学报, 2020, 40 (6): 1741- 1753
SHENG Kuang, REN Na, XU Hong-yi A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40 (6): 1741- 1753
[10]   BOSSHARD R, KOLAR J W Inductive power transfer for electric vehicle charging: technical challenges and tradeoffs[J]. IEEE Power Electronics Magazine, 2016, 3 (3): 22- 30
doi: 10.1109/MPEL.2016.2583839
[11]   WAVE IPT. Extend commercial EV range with WAVE high-power wireless charging [EB/OL]. [2021-06-08]. www. waveipt. com.
[12]   FENG H, TAVAKOLI R, ONAR O C, et al Advances in high-power wireless charging systems: overview and design considerations[J]. IEEE Transactions on Transportation Electrification, 2020, 6 (3): 886- 919
doi: 10.1109/TTE.2020.3012543
[13]   PRIES J, GALIGEKERE V P N, ONAR O C, et al A 50-kW three-phase wireless power transfer system using bipolar windings and series resonant networks for rotating magnetic fields[J]. IEEE Transactions on Power Electronics, 2020, 35 (5): 4500- 4517
[14]   BOSSHARD R, KOLAR J W Multi-objective optimization of 50 kW/85 kHz IPT system for public transport[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4 (4): 1370- 1382
[15]   VU V B, DAHIDAH M, PICKERT V, et al A high-power multiphase wireless dynamic charging system with low output power pulsation for electric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8 (4): 3592- 3608
doi: 10.1109/JESTPE.2019.2932302
[16]   HAO H, COVIC G A, BOYS J T A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29 (3): 1140- 1151
[17]   LI Y, HU J, LI X Efficiency analysis and optimization control for input-parallel output-series wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2020, 35 (1): 1074- 1085
[18]   KIM J H, LEE B S, LEE J H, et al Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62 (10): 6242- 6250
doi: 10.1109/TIE.2015.2417122
[19]   麦瑞坤, 陆立文, 李勇 两逆变器并联IPT系统的环流消除方法研究[J]. 电工技术学报, 2016, 31 (3): 8- 15
MAI Rui-kun, LU Li-wen, LI Yong Circulating current elimination of parallel dual-inverter for IPT systems[J]. Transactions of China Electrotechnical Society, 2016, 31 (3): 8- 15
doi: 10.3969/j.issn.1000-6753.2016.03.002
[20]   LI Y, MAI R, Lu L, et al Active and reactive currents decomposition-based control of angle and magnitude of current for a parallel multi-inverter IPT system[J]. IEEE Transactions on Power Electronics, 2017, 32 (2): 1602- 1614
doi: 10.1109/TPEL.2016.2550622
[21]   ZHOU H, CHEN J, DENG Q, et al Input series output equivalent parallel multi-inverter system for high-voltage and high-power wireless power transfer[J]. IEEE Transactions on Power Electronics, 2021, 36 (1): 228- 238
doi: 10.1109/TPEL.2020.3000244
[22]   薄强, 王丽芳, 张玉旺, 等 应用于无线充电系统的SiC MOSFET关断特性分析[J]. 电力系统自动化, 2021, 45 (15): 150- 157
BO Qiang, WANG Li-fang, ZHANG Yu-wang, et al Analysis of turn-off characteristics of SiC MOSFET applied to wireless charging system[J]. Automation of Electric Power Systems, 2021, 45 (15): 150- 157
[23]   JIANG Y, WANG L, FANG J, et al A joint control with variable ZVS angles for dynamic efficiency optimization in wireless power transfer system[J]. IEEE Transactions on Power Electronics, 2020, 35 (10): 11064- 11081
[1] Kai DU,Guo-rong ZHU,Jiang-hua LU,Mu-ye PANG. Metal object detection method in wireless electric vehicle charging system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 56-62.
[2] Cong-cong FU,Xing-fei LI,Shao-bo YANG,Hong-yu LI,Wen-bin TAN. Frequency splitting characteristics and maximum power point analysis of ICPT system with ocean buoys[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 475-482.
[3] Cheng ZHANG,Tao JIN,Pei-qiang LI,Hui-qiong DENG. Wide-area coordination control strategy for power system using multi-objective bat algorithm[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 589-597.
[4] XU Hai wei, LOU Wen juan, LI Tian hao, LIANG Hong chao, ZHANG Li gang, LU Ming. Wind-induced swing investigation on transmission line jumper wire under hilly terrain[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 264-272.
[5] LIN Ning, YAO Ying-ying, LI Yu-ling, GAO Hui. Design of inductively coupled energy transfer system[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(2): 199-205.
[6] LOU Wen-juan, SUN Zhen-mao, XU Fu-you, LI Hong-nan, WANG Xin. Experimental study on aerodynamic characteristics of air flow spoiler[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 93-98.
[7] LV Yi, LOU Wen-Juan, SUN Zhen-Mao, et al. Numerical simulation of aerodynamic characteristics of three bundled iced transmission lines[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 174-179.