Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1660-1667    DOI: 10.3785/j.issn.1008-973X.2021.09.007
    
Research on flow-induced noise properties of waterjet pump based on cyclostationary method
Qian LI1(),Ning LIANG1,Wei-qi TONG1,Hai-ping Xu2,Lin-lin CAO1,*(),Da-zhuan WU1,3
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Kunming Branch of Xi'an Precision Machinery Research Institute, Kunming 650032, China
3. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1899KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To deeply understand the mechanism of flow induced noise excitation source of waterjet pump and to support the low-noise design of waterjet pump, the acoustic performance of a two-stage propulsion pump was researched. Based on the measured radiated noise under multiple rotational speeds, the modulation mechanism of flow induced noise of this waterjet pump and the extraction method of flow induced noise source were studied. The radiated noise of this two-stage waterjet pump was measured in a cavitation tunnel, and the cyclostationary analysis was conducted to demodulate and extract the characteristic frequency of the flow-induced noise source. The unsteady numerical simulation of the internal flow field of the two-stage propulsion pump was carried out to analyze the distribution characteristics of the transient internal flow field and the characteristics of three-dimensional exciting force. Combining the signal processing results with the internal flow field simulation results, the key characteristics and formation principle of the flow induced noise source of the propulsion pump were studied. Results show that the guide vane plays a key role in the radiated noise characteristics of the two-stage waterjet pump, and the modulation intensity is decided by the incoming flow conditions and operating conditions of the waterjet pump. The matching design of the impeller and guide vane takes a decisive position in the noise and vibration control of waterjet pump.



Key wordswaterjet pump      cyclostationarity      flow-induced noise      two-stage pump      cavitation tunnel experiment     
Received: 14 July 2020      Published: 20 October 2021
CLC:  TU 134  
Corresponding Authors: Lin-lin CAO     E-mail: 11727062@zju.edu.cn;caolinlin@zju.edu.cn
Cite this article:

Qian LI,Ning LIANG,Wei-qi TONG,Hai-ping Xu,Lin-lin CAO,Da-zhuan WU. Research on flow-induced noise properties of waterjet pump based on cyclostationary method. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1660-1667.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.007     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1660


基于循环平稳分析的推进泵流致噪声特性研究

为了深入理解推进泵流致噪声激励源机理,为推进泵低噪声设计提供支撑,以某双级推进泵为对象,基于其多工况下的辐射噪声实测结果,围绕推进泵流致噪声的调制机理及流致噪声源的提取方法展开研究. 在空泡水洞中测量该双级推进泵的辐射噪声,采用循环平稳分析方法,进行噪声解调分析与流致噪声源特征频率提取;开展该双级推进泵内流场的非定常数值模拟,分析其瞬态内流场分布特性与三向激振力特性. 联合信号处理结果与内流场模拟结果,研究推进泵流致噪声源的关键特性与形成原理. 结果表明,导叶是影响双级推进泵辐射噪声特性的关键因素,导叶调制线谱的强度与推进泵的来流条件、运行工况密切相关,叶轮与导叶的匹配性设计对推进泵振动噪声控制起关键作用.


关键词: 推进泵,  循环平稳,  流致噪声,  双级泵,  空泡水洞试验 
Fig.1 Waterjet pump model prototype
参数 数值 单位
叶轮直径 200 mm
设计转速 970 rpm
前置叶轮叶片 5
导叶叶片 11
后置叶轮叶片 6
旋向 右旋
Tab.1 Performance parameters of waterjet pump
Fig.2 Computation domain and boundary conditions
Fig.3 Surface grid of waterjet pump
Fig.4 Computational domain volume grid
Fig.5 Open water performance test and CFD simulation results of waterjet pump
Fig.6 Spectrum analysis of radiated noise signal of two-stage waterjet pump
Fig.7 Cyclostationary analysis of acoustic signals(J=0.5)
Fig.8 Cyclostationary analysis of noisy signals(J=1.0)
Fig.9 Cyclostationary analysis of noisy signals(J=1.5)
Fig.10 Axial excitation force of each part of propulsion pump
Fig.11 Pressure distribution in waterjet pump
[1]   KOWALCZYK S, FELICJANCIK J Numerical and experimental propeller noise investigations[J]. Ocean Engineering, 2016, 120: 108- 115
doi: 10.1016/j.oceaneng.2016.01.032
[2]   TREBBLE W Investigation of the aerodynamic performance and noise characteristics of a 1/5th scale model of the Dowty Rotol R212 propeller[J]. The Aeronautical Journal, 2016, 91 (905): 225- 236
[3]   YAN P, CHU N, WU D, et al Computational fluid dynamics-based pump redesign to improve efficiency and decrease unsteady radial forces[J]. Journal of Fluids Engineering, 2017, 139 (1): 011101
doi: 10.1115/1.4034365
[4]   YAN P, LI S, YANG S, et al Effect of stacking conditions on performance of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2017, 31 (2): 689- 696
doi: 10.1007/s12206-017-0120-6
[5]   史广智, 胡均川 舰船噪声调制谱谐波族结构特性理论分析[J]. 声学学报, 2007, 32 (1): 21- 27
SHI Guang-zhi, HU Jun-chuan Theoretical analysis of the structure law of ship radiated-noise demodulation spectrum harmonic clan feature[J]. Acta of Acustica, 2007, 32 (1): 21- 27
[6]   ZENG S, DU X M, FAN W Theoretical analysis and experimental research on non-cavitation noise modulation mechanism of underwater counter-rotation propeller[J]. Journal of Acoustics, 2018, 37 (2): 129- 145
[7]   苏永生, 王永生, 杨哲辉 基于解调技术的喷泵空化特征提取方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2013, 37 (6): 1180- 1183
SU Yong-sheng, WANG Yong-sheng, YANG Zhe-hui Research on extraction method of jet pump cavitation feature based on demodulation technology[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering Edition, 2013, 37 (6): 1180- 1183
doi: 10.3963/j.issn.2095-3844.2013.06.011
[8]   陈进, 董广明. 机械故障特征提取的循环平稳理论及方法[M]. 上海: 上海交通大学出版社, 2013.
[9]   ZHANG X, MIAO Q, ZHANG H, et al A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58- 72
doi: 10.1016/j.ymssp.2017.11.029
[10]   姜鸣, 陈进 循环自相关函数的解调性能分析[J]. 上海交通大学学报, 2002, 36 (6): 799- 802
JIANG Ming, CHEN Jin Demodulation performance analysis for cyclic autocorrelation function[J]. Journal of Shanghai Jiaotong University, 2002, 36 (6): 799- 802
doi: 10.3321/j.issn:1006-2467.2002.06.015
[11]   ANTONI J Cyclostationarity by examples[J]. Mechanical Systems and Signal Processing, 2009, 23 (4): 987- 1036
doi: 10.1016/j.ymssp.2008.10.010
[12]   LI S, CHU N, YAN P, et al Cyclostationary approach to detect flow-induced effects on vibration signals from centrifugal pumps[J]. Mechanical Systems and Signal Processing, 2019, 114: 275- 289
doi: 10.1016/j.ymssp.2018.05.027
[13]   CHEONG C, JOSEPH P Cyclostationary spectral analysis for the measurement and prediction of wind turbine swishing noise[J]. Journal of Sound and Vibration, 2014, 333 (14): 3153- 3176
doi: 10.1016/j.jsv.2014.02.031
[14]   POIRIER M, GAGNON M, TAHAN A, et al Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling[J]. Mechanical Systems and Signal Processing, 2017, 82: 193- 205
doi: 10.1016/j.ymssp.2016.05.018
[15]   ANTONI J, HANSON D Detection of surface ships from interception of cyclostationary signature with the cyclic modulation coherence[J]. IEEE Journal of Oceanic Engineering, 2012, 37 (3): 478- 493
doi: 10.1109/JOE.2012.2195852
[16]   ANTONI J, XIN G, HAMZAOUI N Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248- 277
doi: 10.1016/j.ymssp.2017.01.011
[17]   曾赛, 杜选民, 范威 水下对转桨非空化线谱噪声分析与数值研究[J]. 兵工学报, 2015, 36 (6): 1052- 1060
ZENG Sai, DU Xuan-min, FAN Wei Numerical simulation and analysis non-cavitation noise line-spectrum frequency of underwater counter-rotation propeller[J]. Acta Armamentarii, 2015, 36 (6): 1052- 1060
doi: 10.3969/j.issn.1000-1093.2015.06.013
[1] Yu ZHANG,Yi-cai LIU. Progress in two-phase flow-induced noise of small scale refrigeration system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 775-792.