Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (7): 1425-1432    DOI: 10.3785/j.issn.1008-973X.2020.07.022
    
Collaborative selective harmonic elimination pulse width modulation for dual-module parallel-connected three-level converters
Yue WANG(),Zhen-bang ZHOU,Yun PENG
CRRC Zhuzhou Institute Limited Company, Zhuzhou 412001, China
Download: HTML     PDF(1767KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A frequency-dividing collaborative control strategy of selective harmonic elimination pulse width modulation (SHEPWM) for three-level neutral point clamped based dual-module grid-tied converters was proposed aiming at the disadvantages of low switching frequency and large current harmonics of medium voltage high power grid-connected converters. Current harmonic performance of dual-module parallel-connected system was effectively improved by restricting output harmonics of each module to zero in low-frequency band, while total output harmonics of the dual-module was controlled to zero in high-frequency band. A frequency adaptive generalized integral (GI) controller was introduced in order to suppress the inherent 5th and 7th harmonics in the grid current caused by the dead-zone of the devices. Parameters of the GI controller were directly designed in discrete domain to avoid the undesired loss of high control precise due to discretization process. The simulation and experimental results verify the effectiveness and superiority of the proposed strategy.



Key wordsmedium-voltage high-power      neutral point clamped three-level      grid-connected converter      dual-module parallel-connected      selective harmonic elimination pulse width modulation (SHEPWM)      frequency-dividing collaborative optimal      harmonic suppression     
Received: 29 May 2019      Published: 05 July 2020
CLC:  TM 762  
  TM 714  
Cite this article:

Yue WANG,Zhen-bang ZHOU,Yun PENG. Collaborative selective harmonic elimination pulse width modulation for dual-module parallel-connected three-level converters. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1425-1432.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.07.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I7/1425


三电平双模块并联协同特定谐波消除脉宽调制

针对中压大功率并网变流器开关频率低、并网电流谐波大等问题,提出适于中性点钳位型(NPC)三电平双模块并联网侧变流器特定谐波消除脉宽调制(SHEPWM)分频段协同控制策略. 通过在低频段控制双模块各自输出谐波为零,在高频段控制并网双模块输出总的谐波为零,有效地提高双模块并联系统电流谐波性能. 为了抑制器件死区引起的并网电流中5次、7次谐波,引入频率自适应广义积分控制器. 该控制器在离散域直接设计参数,避免数字化过程导致控制器性能偏差. 仿真和实验结果验证了所提控制策略的有效性、优越性.


关键词: 中压大功率,  中性点钳位型三电平,  网侧变流器,  双模块并联,  特定谐波消除脉宽调制(SHEPWM),  分频段协同优化,  谐波抑制 
Fig.1 Single-phase voltage waveform of SHEPWM for NPC three-level converter
Fig.2 Main circuit topology of NPC three-level dual-module grid-connected converter
Fig.3 Variation curve of switch angles vs modulation ratio for SHEPWM individual control
Fig.4 Variation curve of switch angles vs modulation ratio for dual-module collaborative SHEPWM
Fig.5 Bode diagram of closed-loop GI controller
Fig.6 Transient response of GI to step change
Fig.7 GI controller based grid current control strategy
参数 数值
变压器原边电压 /kV 10
变压器副边电压 /kV 3.15
电网工频频率 /Hz 50
变流器额定容量 /MVA 7.0×2
单相滤波电感 /mH 0.86
半桥支撑电容 /mF 18
中间直流电压 /V 5 000
1/4周期开关角个数N 9
协同控制参数L 8
数字控制采样频率 /kHz 20
Tab.1 Parameters of dual-module grid-connected converters
Fig.8 Grid current waveform and its spectrum of individual SHEPWM
Fig.9 Grid current waveform and its spectrum of dual-module collaborative SHEPWM
Fig.10 Physical objects of NPC three-level converter based metal-rolling system
Fig.11 Waveform and its spectrum of grid current before and after GI controller applied
Fig.12 Grid current waveform of individual SHEPWM and collaborative SHEPWM
Fig.13 Grid current waveform of metal-rolling converter
[1]   ABU-RUB H, HOLTZ J, RODRIGUEZ J, et al Medium voltage multilevel converters-start of the art, challenges and requirements in industrial applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57 (8): 2581- 2596
doi: 10.1109/TIE.2010.2043039
[2]   WU Bin. 大功率变频器及交流传动[M]. 卫三民, 译. 北京: 机械工业出版社, 2011.
[3]   费万民, 张艳莉, 阮新波, 等 三电平逆变器SHEPWM非线性方程组的求解[J]. 中国电机工程学报, 2008, 28 (6): 62- 68
FEI Wan-min, ZHANG Yan-li, RUAN Xin-bo, et al Solutions to the SHEPWM non-linear equations for three-level voltage inverters[J]. Proceedings of the CSEE, 2008, 28 (6): 62- 68
doi: 10.3321/j.issn:0258-8013.2008.06.011
[4]   SRIDHAR R P, MOHAMED S A, VASSILIOS G A Voltage balancing control of three-level active NPC converter using SHE-PWM[J]. IEEE Transactions on Power Delivery, 2011, 26 (1): 258- 267
doi: 10.1109/TPWRD.2010.2063718
[5]   黄银银, 费万民 两电平逆变器半周期对称SHEPWM方法[J]. 电力自动化设备, 2013, 33 (4): 114- 119
HUANG Yin-yin, FEI Wan-min Half-cycle symmetry SHEPWM method for two-level inverter[J]. Electric Power Automation Equipment, 2013, 33 (4): 114- 119
doi: 10.3969/j.issn.1006-6047.2013.04.021
[6]   谷鑫, 姜勃, 耿强, 等 基于3次谐波控制及脉冲波动分析的三电平SHE-PWM调制优化策略[J]. 电工技术学报, 2015, 30 (7): 88- 95
GU Xin, JIANG Bo, GENG Qiang, et al An optimal SHE-PWM modulation strategy for three-level NPC converter based on third harmonic control and pulse fluctuation analysis[J]. Transactions of China Electrotechnical Society, 2015, 30 (7): 88- 95
doi: 10.3969/j.issn.1000-6753.2015.07.011
[7]   张晓华, 葛兴来 基于SHEPWM的三电平NPC逆变器中点电位平衡控制算法[J]. 电力系统自动化, 2017, 41 (16): 144- 150
ZHANG Xiao-hua, GE Xing-lai Balancing control algorithm of neutral point potential for three-level NPC inverter based on SHEPWM[J]. Automation of Electric Power System, 2017, 41 (16): 144- 150
doi: 10.7500/AEPS20161212005
[8]   SHANG J, NIAN X H, CHEN T, et al Grid-friendly control strategy with dual primary-side series-connected winding transformers[J]. Journal of Power Electronics, 2016, 16 (3): 960- 969
doi: 10.6113/JPE.2016.16.3.960
[9]   SONG K J, KONSTANINOU G, WU M L, et al Windowed SHE-PWM of Interleaved four-quadrant converters for resonance suppression in traction power supply systems[J]. IEEE Transactions on Power Electronics, 2017, 32 (10): 7870- 7881
doi: 10.1109/TPEL.2016.2636882
[10]   张润泽, 林飞, 杨中平, 等 基于SHE-PWM的车网耦合谐振主动抑制策略研究[J]. 电工技术学报, 2018, 33 (Suppl. 1): 129- 138
ZHANG Run-ze, LIN Fei, YANG Zhong-ping, et al Active resonance suppression strategy for grid-train coupling resonance based on SHE-PWM[J]. Transactions of China Electrotechnical Society, 2018, 33 (Suppl. 1): 129- 138
[11]   YEPES A G, FREIJEDO F D, DOVAL-GANDOY J, et al Effects of discretization methods on the performance of resonant controllers[J]. IEEE Transactions on Power Electronics, 2010, 25 (7): 1692- 1712
doi: 10.1109/TPEL.2010.2041256
[12]   王跃, 杨昆, 陈国柱 级联DSTATCOM补偿不平衡负载分相控制策略[J]. 电力自动化设备, 2015, 35 (5): 23- 28
WANG Yue, YANG Kun, CHEN Guo-zhu Individual phase control of cascaded DSTATCOM for unbanlanced load compensation[J]. Electric Power Automation Equipment, 2015, 35 (5): 23- 28
[13]   金涛, 沈学宇, 苏泰新, 等 三电平逆变器的改进无模型预测电流控制[J]. 电力自动化设备, 2019, 39 (4): 86- 91
JIN Tao, SHEN Xue-yu, SU Tai-xin, et al Improved model-free predictive current control for three-lever inverter[J]. Electric Power Automation Equipment, 2019, 39 (4): 86- 91
[14]   谢川, 贺超, 闫辉, 等 基于频率自适应广义积分控制器选择性谐波电流控制策略[J]. 电工技术学报, 2013, 28 (9): 65- 72
XIE Chuan, HE Chao, YAN Hui, et al Selective harmonic current control strategy based on frequency adaptive generalized integrators[J]. Transactions of China Electrotechnical Society, 2013, 28 (9): 65- 72
doi: 10.3969/j.issn.1000-6753.2013.09.008
[15]   韩刚, 蔡旭 不平衡及畸变电网下并网变流器的比例多谐振电流控制[J]. 电力自动化设备, 2017, 37 (11): 104- 112
HAN Gang, CAI Xu Proportional multi-resonance current control of grid-connected converter under unbalanced and distorted grid conditions[J]. Electric Power Automation Equipment, 2017, 37 (11): 104- 112
[1] YANG Kun, CHEN Lei, CHEN Guo-zhu. High performance compensation current control strategy of #br# single-phase SVG[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 339-344.
[2] XUE Shao-shen, XU Hai-ping, FANG Cheng, NIU Wei-kun, XUE Shan. Multiphase permanent magnet synchronous motor harmonic plane control based on carrier technology[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2080-2086.