Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1964-1970    DOI: 10.3785/j.issn.1008-973X.2020.10.013
    
No-load voltage of liquid metal magnetohydrodynamic power generator
Ren-yi YI(),Yong WANG*(),Yu-dong XIE,Kai QIAO,Yu-lei ZHANG
School of Mechanical Engineering, Shandong University, Jinan 250061, China
Download: HTML     PDF(1290KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional flow model of power generation channel was constructed in order to analyze the factors affecting the no-load voltage of liquid metal magnetohydrodynamic power generator. The influence of inlet velocity, magnetic flux density, channel width, channel height and liquid metal category on no-load voltage was analyzed based on computational fluid dynamics (CFD) method. The structure of power generation channel was modified by adding insulating blocks considering that current has reflux phenomenon in Hartmann layer. The optimization mechanism of the no-load voltage was analyzed from two aspects of the change of velocity distribution and current density. Results showed that the no-load voltage was proportional to the inlet velocity, magnetic flux density and channel width, but had no obvious relationship with channel height. The larger the channel width was, the higher the relative error of the no-load voltage was. The liquid metal with high density and low conductivity reduced the no-load voltage. The relative error of no-load voltage was about 12.3% before the improvement of generation channel. After the improvement, the no-load voltage was increased by 13.3% and the relative error was reduced to 0.6% compared with before improvement.



Key wordsliquid metal magnetohydrodynamic (LMMHD)      no-load voltage      structural improvement      Fluent     
Received: 08 October 2019      Published: 28 October 2020
CLC:  TK 5  
Corresponding Authors: Yong WANG     E-mail: 2814069775@qq.com;meywang@sdu.edu.cn
Cite this article:

Ren-yi YI,Yong WANG,Yu-dong XIE,Kai QIAO,Yu-lei ZHANG. No-load voltage of liquid metal magnetohydrodynamic power generator. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1964-1970.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.013     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1964


液态金属磁流体发电机空载电压

为了探究影响液态金属磁流体发电机空载电压的因素,建立发电通道三维流动模型. 采用计算流体力学(CFD)技术,研究发电通道入口速度、磁感应强度、通道宽度、通道高度、液态金属类别对空载电压的影响. 考虑哈特曼层电流回流现象,通过添加绝缘块,对发电通道装置进行结构改进. 从改进后的磁流体速度分布和电流密度变化两方面,分析空载电压优化机理. 结果表明:空载电压与入口速度、磁感应强度、通道宽度成正比,与通道高度无明显关系,但是通道宽度越大,空载电压相对误差越高;高密度、低电导率的液态金属会降低空载电压. 发电通道改进前,空载电压的相对误差为12.3%;改进后的发电通道,空载电压比改进前提高13.3%,相对误差降至0.6%.


关键词: 液态金属磁流体(LMMHD),  空载电压,  结构改进,  Fluent 
Fig.1 Geometry model of power generation channel
Fig.2 Mesh structure of typical plane
Fig.3 Channel model of Hunt’s case
Fig.4 Comparison between numerical solution and analytical solution of velocity distribution
工质 ρ/(kg·m3 σ/(S·m?1 μ/(Pa·s)
水银 1.35×104 1.04×106 0.16×10-2
镓铟锡合金 6.44×103 2.24×106 0.24×10-2
铀合金 8.85×103 2.30×106 0.27×10-2
钠钾合金 8.66×102 2.46×106 0.66×10-3
Tab.1 Physical and chemical properties of different working fluids
Fig.5 Relationship between different factors and no-load voltage
工质 U/mV U′/mV δ/%
水银 0.48 0.410 14.6
镓铟锡合金 0.48 0.421 12.3
铀合金 0.48 0.418 12.9
钠钾合金 0.48 0.451 6.0
Tab.2 No-load voltage under different working fluids
Fig.6 Current density distribution in x direction of typical plane under reference conditions
Fig.7 Current density in x direction of typical plane
Fig.8 Velocity distribution in z direction of typical plane
Fig.9 Electric field strength in x direction on straight line of y = 0 at typical plane
[1]   PANCHADAR K, WEST D, TAYLOR J A, et al Mechanical energy harvesting using a liquid metal vortex magnetohydrodynamic generator[J]. Applied Physics Letters, 2019, 114 (9): 093901-1- 5
[2]   JACKSON W D Liquid-metal Faraday-type MHD generators[J]. IEEE Transactions on Power Apparatus and Systems, 1963, 82 (69): 904- 907
doi: 10.1109/TPAS.1963.291473
[3]   YAMADA K, MAEDA T, HASEGAWA Y, et al Two-dimensional numerical simulation on performance of liquid metal MHD generator[J]. Electrical Engineering in Japan, 2006, 156 (1): 25- 32
doi: 10.1002/eej.20165
[4]   YAMADA K, MAEDA T, HASEGAWA Y, et al Three-dimensional numerical analysis of a liquid metal MHD generator[J]. Electrical Engineering in Japan, 2007, 160 (3): 19- 26
doi: 10.1002/eej.20282
[5]   RYAN D, LOESCHER C, HAMILTON I, et al Magnetic variation and power density of gravity driven liquid metal magnetohydrodynamic generators[J]. Annals of Nuclear Energy, 2018, 114: 325- 328
doi: 10.1016/j.anucene.2017.12.047
[6]   HUANG Z Y, LIU Y J, WANG Z Y, et al Three-dimensional simulations of MHD generator coupling with outer resistance circuit[J]. Simulation Modelling Practice and Theory, 2015, 54: 1- 18
doi: 10.1016/j.simpat.2015.02.006
[7]   KOBAYASHI H, SHIONOYA H, OKUNO Y Turbulent duct flows in a liquid metal magnetohydrodynamic power generator[J]. Journal of Fluid Mechanics, 2012, 713: 243- 270
doi: 10.1017/jfm.2012.456
[8]   RYNNE T M. Ocean wave energy conversion system: 5136173 [P]. 1992-08-04.
[9]   王勇, 孙光, 崔艳, 等. 鳐鱼式液态金属磁流体发电装置及发电方法: 201610191945.5 [P]. 2016-03-30.
[10]   赵凌志, 彭燕, 沙次文, 等 新型液态金属磁流体发电机的等效电路模型[J]. 电力自动化设备, 2011, 31 (12): 21- 25
ZHAO Ling-zhi, PENG Yan, SHA Ci-wen, et al Equivalent circuit model of liquid metal magnetohydrodynamic generator[J]. Electric Power Automation Equipment, 2011, 31 (12): 21- 25
[11]   彭燕. 新型磁流体波浪能发电技术的研究[C] // 2010中国可再生能源科技发展大会论集. 北京: [s. n. ], 2010: 638-643.
PENG Yan. Novel wave energy converter with magnetohydrodynamic generator [C] // Conference on China Technological Development of Renewable Energy Source. Beijing: [s. n. ], 2010: 638-643.
[12]   LIN Z W, PENG Y, ZHAO L Z, et al. Analytical study on end effect of liquid metal MHD generator [C] // 38th AIAA Plasmadynamics and Lasers Conference. Miami: AIAA, 2007.
[13]   LIU B L, LI J, PENG Y, et al Experimental and numerical investigation of magnetohydrodynamic generator for wave energy[J]. Journal of Ocean and Wind Energy, 2015, 2 (1): 21- 27
[14]   YAMAGUCHI H, NIU X D, ZHANG X R Investigation on a low-melting-point gallium alloy MHD power generator[J]. International Journal of Energy Research, 2011, 35 (3): 209- 220
doi: 10.1002/er.1685
[15]   NIU X D, YAMAGUCHI H, YE X J, et al Characteristics of a MHD power generator using a low-melting-point Gallium alloy[J]. Electrical Engineering, 2012, 96 (1): 37- 43
[16]   SWAIN P K, SATYAMURTHY P, BHATTACHARYAY R, et al 3D MHD lead–lithium liquid metal flow analysis and experiments in a Test-Section of multiple rectangular bends at moderate to high Hartmann numbers[J]. Fusion Engineering and Design, 2013, 88 (11): 2848- 2859
doi: 10.1016/j.fusengdes.2013.05.048
[17]   张宇磊, 王勇, 谢玉东, 等 新型液态金属磁流体发电动力学特性数值模拟[J]. 山东大学学报: 工学版, 2019, 49 (1): 101- 106
ZHANG Yu-lei, WANG Yong, XIE Yu-dong, et al Numerical simulation on kinetics characteristics of liquid metal MHD generator[J]. Journal of Shandong University: Engineering Science, 2019, 49 (1): 101- 106
[18]   张秀杰, 毛洁, 潘传杰, 等 矩形管道中液态金属MHD流动数值模拟研究[J]. 核聚变与等离子体物理, 2012, 32 (1): 15- 20
ZHANG Xiu-jie, MAO Jie, PAN Chuan-jie, et al Numerical analysis of liquid metal MHD flows in rectangular duct[J]. Nuclear Fusion and Plasma Physics, 2012, 32 (1): 15- 20
[19]   HUNT J C R Magnetohydrodynamic flow in rectangular ducts[J]. Journal of Fluid Mechanics, 1965, 21 (4): 577- 590
doi: 10.1017/S0022112065000344
[20]   ZHAO L Z, PENG Y, SHA C W, et al. End effect of liquid metal magnetohydrodynamic generator in wave energy direct conversion system [C] // International Conference on Sustainable Power Generation and Supply. Nanjing: IEEE, 2009: 1-6.
[1] Chu-hang YANG,Shao-hui JIA,Ye-cheng MA,Jing-wei ZHU,Yong LIU,Gao-rong HAN. Three-dimensional numerical engineering simulation of oxy-fuel high alumina glass furnace[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 410-418.
[2] Zhong YUN,Meng WEN,Yi JIANG,Long CHEN,Long-fei FENG. Design and hydrodynamic analysis of pectoral fin oscillation propulsion mechanism of bionic manta ray[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 872-879.
[3] XIA Neng, XIE Jun, ZHANG Cheng-qian, ZHAO Peng, FU Jian-zhong. Magnetic levitation simulation and density measurement for diamagnetic materials[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(3): 473-478.
[4] LI Meng-xuan, WU Jia, ZHENG Shui-ying, YING Guang-yao, LIU Shu-lian. Stability of bearing-rotor system with different bearing structures[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(11): 2239-2248.
[5] LIU Hai bin, WANG Yong, MA Peng lei, XIE Yu dong. Coupling analysis of parameters based on parallel-oscillating hydrofoils hydrokinetic turbine[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(1): 153-159.
[6] RUAN Fang, QIAN Xiao qian, ZHU Yao tai, WU Min li. Internal and external wall insulation effect on building energy efficiency with compartmental and intermittent energy consuming method[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 1-7.