Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (9): 1788-1794    DOI: 10.3785/j.issn.1008-973X.2021.09.021
    
Design of multi chip fractional frequency phase locked loop output signal phase synchronization
Yan-tian XU1(),Xiao-min HUANG2,Hao-ming LI2,Zhi-yu WANG1,*(),Fa-xin YU1
1. College of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Chengxin Technology Limited company, Hangzhou 310030, China
Download: HTML     PDF(966KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An algorithm of fractional frequency phase locked loop (PLL) output signal phase synchronization was proposed, in order to realize the phase synchronization of PLL on multiple transceiver chips or a single transceiver chip in a multi-channel radio frequency (RF) communication system. A selection algorithm of sampling points for phase accumulation was designed. The sampling points selected by the algorithm were used to accumulate the triangulation results of PLL’s output signal under sampled by reference clock and reference signal generated by NC oscillator (NCO), so as to eliminate the high-order harmonic component and reduce the error of the phase difference calculation result effectively. According to the size of the phase difference, the fractional frequency ratio of the input of delta-sigma modulator (DSM) in PLL was adjusted by feedback, so that the phase of PLL output signal was adjusted linearly, and the phase synchronization of multiple PLL output signals with reference signal was realized. The correctness of the algorithm is verified by simulation, and the phase error is 0.35 ° after the final phase synchronization, and the time required to complete the synchronization is 210 ms.



Key wordsfractional frequency phase locked loop      phase synchronization      multi-chip synchronization      multi-channel radio frequency communication      phase difference calculation     
Received: 09 September 2020      Published: 20 October 2021
CLC:  TN402  
Corresponding Authors: Zhi-yu WANG     E-mail: 21824063@zju.edu.cn;zywang@zju.edu.cn
Cite this article:

Yan-tian XU,Xiao-min HUANG,Hao-ming LI,Zhi-yu WANG,Fa-xin YU. Design of multi chip fractional frequency phase locked loop output signal phase synchronization. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1788-1794.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.09.021     OR     https://www.zjujournals.com/eng/Y2021/V55/I9/1788


多芯片小数分频锁相环输出信号相位同步设计

为了在多通道射频(RF)通信系统中,实现多个收发器芯片或单个收发器芯片上的锁相环(PLL)相位同步,提出小数分频PLL输出信号相位同步算法. 设计相位累加采样点数选取算法,算法选取的采样点数用于累加参考时钟欠采样的PLL输出信号与数控振荡器(NCO)产生的参考信号经三角运算的结果,以消除高次谐波分量,并有效降低相位差计算结果的误差. 根据相位差的计算结果反馈调节PLL内 delta-sigma 调制器(DSM)输入的小数分频比,线性调整PLL输出信号的相位,实现多个PLL输出信号相位与参考信号相位同步. 通过仿真验证算法的正确性,且最终相位同步后的相位误差为0.35°,完成同步所需的时间为210 ms.


关键词: 小数分频锁相环,  相位同步,  多芯片同步,  多通道射频通信,  相位差计算 
Fig.1 Basic structure of fractional frequency PLL and multi-chip PLL phase synchronization function diagram
Fig.2 Block diagram of fractional frequency PLL phase synchronization circuit
Fig.3 Variation curve of error sampling points with Ncal
Fig.4 Error curve of phase difference calculation results with accumulated sampling points
Fig.5 Two PLL output signal before phase synchronization
Fig.6 NCO output signal and its phase signal
Fig.7 Phase difference calculated by phase detector
Fig.8 Two PLL output signals after phase synchronization
Fig.9 Curve of phase difference with time between two PLL output signals
[1]   HUANG S, LIU S, LIU M, et al Low-noise fractional-N PLL with a high-precision phase control in the phase synchronization of multichips[J]. IEEE Microwave and Wireless Components Letters, 2018, 28 (8): 702- 704
doi: 10.1109/LMWC.2018.2842680
[2]   YANG T, NIU Y, YU J Clock synchronization in wireless sensor networks based on Bayesian estimation[J]. IEEE Access, 2020, 8: 69683- 69694
doi: 10.1109/ACCESS.2020.2984785
[3]   HALL D, HINDE A, JIA Y. Multi-channel phase-coherent RF measurement system architectures and performance considerations [C]// 2014 IEEE Military Communications Conference. Baltimore: MD, 2014: 1318-1323.
[4]   上海交通大学. 锁相环电路、多锁相环系统及其输出相位同步方法: 201810053079.2[P]. 2018-01-17.
[5]   林波. 大规模MIMO外部本振的研究[D]. 南京: 东南大学, 2018: 1.
LIN Bo. Research on external local oscillator of massive MIMO communication systems [D]. Nanjing: Southeast University, 2018: 1.
[6]   瑞典爱立信有限公司. 用于波束成形和MIMO的本地振荡器相位同步: 201680010974.5[P]. 2016-02-02.
[7]   MARKULIC N, RACZKOWSKI K, WAMBACQ P, et al. A 10-bit, 550-fs step digital-to-time converter in 28 nm CMOS [C]// 40th European Solid State Circuits Conference (ESSCIRC). Venice Lido: [s.n.], 2014: 79-82.
[8]   RU J Z, PALATTELLA C, GERAEDTS P, et al A high-linearity digital-to-time converter technique: constant-slope charging[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (6): 1412- 1423
doi: 10.1109/JSSC.2015.2414421
[9]   TSENG Y, YEH C, LIU S A 2.25~2.7 GHz area-efficient subharmonically injection-locked fractional-N frequency synthesizer with a fast-converging correlation loop[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64 (4): 811- 822
doi: 10.1109/TCSI.2016.2620151
[10]   LEVANTINO S, MARUCCI G, MARZIN G, et al A 1.7 GHz fractional-N frequency synthesizer based on a multiplying delay-locked loop[J]. IEEE Journal of Solid-State Circuits, 2015, 50 (11): 2678- 2691
doi: 10.1109/JSSC.2015.2473667
[11]   PAVLOVIC N, BERGERVOET J. A 5.3 GHz digital-to-time converter based fractional-N all-digital PLL [C]// 2011 IEEE International Solid-State Circuits Conference. San Francisco: CA, 2011: 54-56.
[12]   XU Y Y, LI W, WANG W, et al A 65 nm 19.1-to-20.4 GHz sigma-delta fractional-N frequency synthesizer with two-point modulation for FMCW radar applications[J]. IEICE Transactions on Electronics, 2019, E102.C (1): 64- 76
doi: 10.1587/transele.E102.C.64
[13]   王征晨, 武照博, 齐全文, 等 应用于K波段分数分频频率综合器的多模分频器设计与优化[J]. 北京理工大学学报, 2019, 39 (11): 1187- 1191
WANG Zheng-chen, WU Zhao-bo, QI Quan-wen, et al Design and optimization of multi-modulus-divider for K-band fractional-N frequency synthesizer[J]. Journal of Beijing University of technology, 2019, 39 (11): 1187- 1191
[14]   闫冲, 王强, 李晓慧, 等 基于小数分频锁相环的低杂散频率源设计[J]. 电子质量, 2019, (4): 65- 69
YAN Chong, WANG Qiang, LI Xiao-hui, et al Design of frequency source with low spurious based on fractional-N PLL[J]. Electronic Quality, 2019, (4): 65- 69
doi: 10.3969/j.issn.1003-0107.2019.04.017
[15]   冯跃辉 小数分频锁相环杂散抑制技术研究和应用[J]. 电子技术与软件工程, 2020, (6): 20- 22
FENG Yue-hui Research and application of spurious suppression technology of fractional frequency PLL[J]. Electronic Technology and Software Engineering, 2020, (6): 20- 22
[16]   田荣倩, 李浩明, 刘家瑞, 等 一种低相位噪声的UHF频段小数分频频率综合器[J]. 半导体技术, 2018, 43 (1): 24- 30
TIAN Rong-qian, LI Hao-ming, LIU Jia-rui, et al A low-phase-noise UHF-band fractional-N frequency synthesizer[J]. Semiconductor Technology, 2018, 43 (1): 24- 30
[17]   吴小林, 朱学勇, 文光俊 锁相环小数N分频频率综合器中的Sigma-delta调制器设计[J]. 电视技术, 2011, 35 (17): 55- 58
WU Xiao-lin, ZHU Xue-yong, WEN Guang-jun Design of sigma-delta modulator in fractional-N PLL frequency synthesizer[J]. Television Technology, 2011, 35 (17): 55- 58
doi: 10.3969/j.issn.1002-8692.2011.17.018
[1] ZHENG Dan-Dan, ZHANG Pei-Yong, LV Dong-Meng. Useful clock skew scheduling based on particle swarm optimization[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 665-669.