Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2025, Vol. 59 Issue (9): 1891-1901    DOI: 10.3785/j.issn.1008-973X.2025.09.013
    
Day-ahead market economic dispatch considering energy storage providing flexible ramping products
Haijun XING1(),Qian YU1,Mingyang CHENG2,Qizhen GUO1,Chenghao HUANG1
1. College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2. Lianyungang Power Supply Company, State Grid Jiangsu Electric Power Co. Ltd, Lianyungang 222000, China
Download: HTML     PDF(1490KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A day-ahead market economic dispatch model that incorporated the flexible ramping products (FRPs) provided by energy storage systems was proposed to fully harness the flexible regulatory capabilities of various resources to ensure real-time flexibility, thereby addressing the problem that conventional thermal power units cannot meet the power system’s flexibility demands against the backdrop of the construction of a new type of power system. The demand composition and the opportunity cost of FRPs were introduced. A decision tree model for FRPs participation in flexible ramping deployment in the day-ahead and real-time markets was obtained by conducting the probabilistic analysis of the decision-making schemes for FRPs in both the day-ahead and real-time markets, and the cost and revenue analyses were performed under the scenarios where FRPs are either abundant or scarce. Based on this, a day-ahead market economic dispatch model that considered energy storage providing FRPs was established. After the economic dispatch in the day-ahead market, the cost and FRPs revenue settlement was achieved based on the probability of accepting FRPs in the day-ahead market and the expected deployment probability in the real-time market. A case study analysis using an improved IEEE 30-bus system was conducted to validate the superiority of the model with energy storage participation, and the impact of the acceptance probability in the day-ahead market and the expected deployment probability in the real-time market on the system was discussed.



Key wordsflexible ramping products      energy storage      day-ahead market acceptance probability      real-time market deployment probability      decision tree     
Received: 24 December 2024      Published: 25 August 2025
CLC:  TP 393  
Fund:  国家自然科学基金资助项目(52477106).
Cite this article:

Haijun XING,Qian YU,Mingyang CHENG,Qizhen GUO,Chenghao HUANG. Day-ahead market economic dispatch considering energy storage providing flexible ramping products. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1891-1901.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2025.09.013     OR     https://www.zjujournals.com/eng/Y2025/V59/I9/1891


考虑储能提供灵活爬坡产品的日前市场经济调度

针对新型电力系统建设背景下常规火电机组不能满足系统灵活性需求的问题,为了充分挖掘各资源的灵活调节能力,保障系统实时灵活性,提出考虑储能提供灵活爬坡产品(FRPs)的日前市场经济调度模型. 介绍FRPs的需求构成和机会成本计算方法;通过对日前市场和实时市场的FRPs决策方案进行概率分析,得到FRPs在日前和实时市场参与灵活爬坡部署的决策树模型,在FRPs充足和短缺的情况下进行成本和收益分析. 在此基础上建立考虑储能提供FRPs的日前市场经济调度模型,并在日前市场进行经济调度后,根据FRPs的日前市场接受概率和实时市场预期部署概率来实现成本和FRPs收益结算. 通过改进的IEEE 30节点进行算例分析,验证了储能参与下该模型的优越性,并探讨了日前市场接受概率和实时市场预期部署概率对系统的影响.


关键词: 灵活爬坡产品,  储能,  日前市场接受概率,  实时市场部署概率,  决策树 
Fig.1 Ramping demand considering regulating capacity
机组$\lambda^{\mathrm{G}} /\left(\$ \cdot \mathrm{MW}^{-1} \cdot \mathrm{h}^{-1}\right)$$ {R}_{\text{up}}^{\text{G}}/{\mathrm{MW}} $$ {C}_{\text{op}}^{\text{G}} /\left(\$ \cdot \mathrm{MW}^{-1} \cdot \mathrm{h}^{-1}\right)$
G120200
G218202
G316104
G412108
G5101010
G62510
Tab.1 Relationship between opportunity cost of FRPs and market quotation of electricity energy
Fig.2 Relationship between opportunity cost of FRPs and ramping demand
Fig.3 Decision tree for FRPs participation in day-ahead and real-time markets
Fig.4 Costs and revenues of FRPs participating in market settlement
Fig.5 Structure diagram of improved IEEE 30 node system
机组$ P_{i,\max }^{{\mathrm{G}}} $/
MW
$ P_{i,\min }^{{\mathrm{G}}} $/
MW
$ {R}_{i}^{\text{G}\text{ }} $/
(MW·h?1)
$ {\lambda }_{i}^{\text{G}} $/
($·MW?1)
$t_{{\text{on}}}^{\min }/{\mathrm{h}}$$t_{{\text{off}}}^{\min }/{\mathrm{h}}$$t_{\text{run}}^{\;}/{\mathrm{h}}$
G12001002516101010
G2100403020888
G38040202466?6
G440203026444
G550202028333
G62010403011?1
Tab.2 Thermal power unit parameters
Fig.6 Forecast results of day-ahead wind power output and real-time wind power output
Fig.7 Day-ahead load and real-time load Forecast results
Fig.8 Electricity prices in day-ahead market and real-time market
场景$ C $/(104 $)$ {C_{{\text{FRPs}}}} $/(104 $)$ {R_{{\text{FRPs}}}} $/(104 $)$ {C_{\text{p}}} $/(104 $)
119.410.000.004.57
216.041.251.781.79
314.561.412.540.45
Tab.3 Comparison of operation costs under different scenarios
Fig.9 Energy storage output analysis in scenario 2
Fig.10 Energy storage output analysis in scenario 3
Fig.11 Upward and downward awarded quantities of FRPs in day-ahead market
$ \alpha $$ P_{{{\mathrm{up}}}}^{{\mathrm{G}}}/{\text{MW}} $$ P_{{\text{dn}}}^{{\mathrm{G}}}/{\text{MW}} $$ P_{{\text{up}}}^{{{\mathrm{E}}}{\text{d}}}/{\text{MW}} $$ P_{{\text{dn}}}^{{{\mathrm{E}}}{\text{c}}}/{\text{MW}} $$ {P_{{\text{up}}}}/{\text{MW}} $$ {P_{{\text{dn}}}}/{\text{MW}} $
0.00.00.00.00.00.00.0
0.133.546.511.60.045.146.5
0.265.693.124.70.090.393.1
0.399.0125.636.212.2135.2138.2
0.4130.5151.050.635.0181.1186.0
0.5154.1176.971.555.8225.6232.8
0.6179.2213.890.165.4270.1279.2
0.7195.7244.6120.182.2315.8325.8
0.8202.1264.5158.0107.8360.1372.3
0.9197.6264.5208.4154.4406.0418.9
1.0184.5264.5266.7200.5451.2465.0
Tab.4 Relationship between acceptance probability of day-ahead market and capacity
Fig.12 Impact of acceptance probability of day-ahead market on costs
Fig.13 Impact of expected deployment probability in real-time market on costs and revenues
[1]   鲁宗相, 李海波, 乔颖 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9- 20
LU Zongxiang, LI Haibo, QIAO Ying Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9- 20
[2]   王蓓蓓, 仇知, 丛小涵, 等 基于两阶段随机优化建模的新能源电网灵活性资源边际成本构成的机理分析[J]. 中国电机工程学报, 2021, 41 (4): 1348- 1359
WANG Beibei, QIU Zhi, CONG Xiaohan, et al Mechanism analysis of flexible resources’ marginal price in new energy grid based on two-stage stochastic optimization modeling[J]. Proceedings of the CSEE, 2021, 41 (4): 1348- 1359
[3]   YAMUJALA S, JAIN A, SREEKUMAR S, et al Enhancing power systems operational flexibility with ramp products from flexible resources[J]. Electric Power Systems Research, 2022, 202: 107599
doi: 10.1016/j.jpgr.2021.107599
[4]   吴珊, 边晓燕, 张菁娴, 等 面向新型电力系统灵活性提升的国内外辅助服务市场研究综述[J]. 电工技术学报, 2023, 38 (6): 1662- 1677
WU Shan, BIAN Xiaoyan, ZHANG Jingxian, et al A review of domestic and foreign ancillary services market for improving flexibility of new power system[J]. Transactions of China Electrotechnical Society, 2023, 38 (6): 1662- 1677
[5]   中国国家能源局. 新型电力系统发展蓝皮书[M]. 北京: 中国电力出版社, 2023: 20−28.
[6]   PARK H, HUANG B, BALDICK R Enhanced flexible ramping product formulation for alleviating capacity shortage in look-ahead commitment[J]. Journal of Modern Power Systems and Clean Energy, 2022, 10 (4): 850- 860
doi: 10.35833/MPCE.2020.000942
[7]   王蓓蓓, 丛小涵, 高正平, 等 高比例新能源接入下电网灵活性爬坡能力市场化获取机制现状分析及思考[J]. 电网技术, 2019, 43 (8): 2691- 2702
WANG Beibei, CONG Xiaohan, GAO Zhengping, et al Status analysis and thoughts of market-oriented acquisition mechanism on flexible ramp capability for power grid with high proportion of renewable energy[J]. Power System Technology, 2019, 43 (8): 2691- 2702
[8]   SABERI L, ALIZADEH M I, MOGHADDAM M P Optimal scheduling of flexible ramp product and emerging flexible resources considering short-term variability impacts in power system with high RESs penetration: a novel robust UC approach[J]. International Journal of Electrical Power and Energy Systems, 2022, 142: 108279
doi: 10.1016/j.ijepes.2022.108279
[9]   CHEN K, CHEN W, LIN C, et al. Integrated energy system day-ahead dispatch considering supply-side and demand-side flexibility [C]// IEEE 5th Conference on Energy Internet and Energy System Integration. Taiyuan: IEEE, 2021: 1662−1667.
[10]   KHOSHJAHAN M, FOTUHI-FIRUZABAD M, MOEINI-AGHTAIE M, et al Enhancing electricity market flexibility by deploying ancillary services for flexible ramping product procurement[J]. Electric Power Systems Research, 2021, 191: 106878
doi: 10.1016/j.jpgr.2020.106878
[11]   马洪艳, 贠靖洋, 严正 基于分布鲁棒优化的灵活爬坡备用调度方法[J]. 中国电机工程学报, 2020, 40 (19): 6121- 6132
MA Hongyan, YUN Jingyang, YAN Zheng Distributionally robust optimization based dispatch methodology of flexible ramping products[J]. Proceedings of the CSEE, 2020, 40 (19): 6121- 6132
[12]   ZHANG Z, LI F, PARK S W, et al Local energy and planned ramping product joint market based on a distributed optimization method[J]. CSEE Journal of Power and Energy Systems, 2021, 7 (6): 1357- 1368
[13]   HU J, SARKER M R, WANG J, et al Provision of flexible ramping product by battery energy storage in day-ahead energy and reserve markets[J]. IET Generation, Transmission and Distribution, 2018, 12 (10): 2256- 2264
doi: 10.1049/iet-gtd.2017.1522
[14]   张景淳, 陈胜, 彭琰, 等 计及灵活爬坡的气-电耦合综合能源系统低碳经济调度研究[J]. 电网技术, 2022, 46 (9): 3315- 3325
ZHANG Jingchun, CHEN Sheng, PENG Yan, et al Low carbon economic scheduling of gas-electric coupling integrated energy system considering flexible ramping products[J]. Power System Technology, 2022, 46 (9): 3315- 3325
[15]   郭鸿业, 陈启鑫, 夏清, 等 电力市场中的灵活调节服务: 基本概念、均衡模型与研究方向[J]. 中国电机工程学报, 2017, 37 (11): 3057- 3066
GUO Hongye, CHEN Qixin, XIA Qing, et al Flexible ramping product in electricity markets: basic concept, equilibrium model and research prospect[J]. Proceedings of the CSEE, 2017, 37 (11): 3057- 3066
[16]   CORNELIUS A. Assessing the impact of flexible ramp capability products in the Midcontinent ISO [D]. Durham: Duke University, 2014.
[17]   GHALJEHEI M, KHORSAND M Day-ahead operational scheduling with enhanced flexible ramping product: design and analysis[J]. IEEE Transactions on Power Systems, 2022, 37 (3): 1842- 1856
doi: 10.1109/TPWRS.2021.3110712
[18]   MARNERIS I G, BISKAS P N, BAKIRTZIS E A An integrated scheduling approach to underpin flexibility in European power systems[J]. IEEE Transactions on Sustainable Energy, 2016, 7 (2): 647- 657
doi: 10.1109/TSTE.2015.2497081
[19]   HUANG C, MA H, YAN Z, et al Portfolio management for a wind-storage system based on distributionally robust optimisation considering a flexible ramping product[J]. IET Renewable Power Generation, 2020, 14 (16): 3192- 3199
doi: 10.1049/iet-rpg.2019.0964
[20]   朱西平, 罗健, 李姿霖, 等 考虑灵活爬坡产品的能源枢纽低碳经济调度[J]. 电力自动化设备, 2023, 43 (1): 9- 15
ZHU Xiping, LUO Jian, LI Zilin, et al Low-carbon economic dispatching of energy hub considering flexible ramping product[J]. Electric Power Automation Equipment, 2023, 43 (1): 9- 15
[21]   成明洋, 邢海军, 米阳, 等. 考虑风光储场站参与灵活爬坡的两阶段市场联合出清[J/OL]. 上海交通大学学报, 2024: 1–28. (2024-04-03) [2024-05-26]. https://doi.org/10.16183/j.cnki.jsjtu.2023.570.
CHENG Mingyang, XING Haijun, MI Yang, et al. Two-stage market joint clearance considering participation of wind/photovoltaic/energy storage power station in flexible ramping [J]. Journal of Shanghai Jiao Tong University, 2024: 1–28. (2024-04-03) [2024-05-26]. https://doi.org/10.16183/j.cnki.jsjtu.2023.570.
[22]   TOUBEAU J F, BOTTIEAU J, DE GRÈVE Z, et al. Data-driven scheduling of energy storage in day-ahead energy and reserve markets with probabilistic guarantees on real-time delivery [J]. IEEE Transactions on Power Systems, 2021, 36(4): 2815−2828.
[23]   AI X, WU Z, HU J, et al. Robust operation strategy enabling a combined wind/battery power plant for providing energy and frequency ancillary services [J]. International Journal of Electrical Power and Energy Systems, 2020, 118: 105736.
[24]   王玲玲, 刘恋, 张锞, 等 电力系统灵活调节服务与市场机制研究综述[J]. 电网技术, 2022, 46 (2): 442- 452
WANG Lingling, LIU Lian, ZHANG Ke, et al A review of power system flexible ramping product and market mechanism[J]. Power System Technology, 2022, 46 (2): 442- 452
[25]   崔杨, 周慧娟, 仲悟之, 等 考虑火电调峰主动性与需求响应的含储能电力系统优化调度[J]. 高电压技术, 2021, 47 (5): 1674- 1684
CUI Yang, ZHOU Huijuan, ZHONG Wuzhi, et al Optimal dispatch of power system with energy storage considering deep peak regulation initiative of thermal power and demand response[J]. High Voltage Engineering, 2021, 47 (5): 1674- 1684
[1] Yiming SHANG,Weiqing WANG,Xiaozhu LI,Chengkang GUO,Sizhe YAN. Hydrogen storage capacity planning for multiple types of microgrids considering shared trading mechanism[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 426-436.
[2] Xiaojie LIN,Jiahao XU,Peng SUN,Wei ZHONG,Yacai HU. Thermodynamic cycle design of steam Carnot battery based on phase change material[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 161-168.
[3] Ying ZHAO,Da WANG,Jia-hua NI,Yong-hui LING,Ji XIANG,Ting-ting ZHENG. Energy storage sliding mode controller for controlling acceleration power of synchronous generator[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 1050-1060.
[4] Qian WANG,Bin WANG,Xiang LIU. Optimal allocation of integrated energy systems in industrial parks under zero carbon trading[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2294-2304.
[5] Gen LI,Wei ZHAI,Lan WU. Study of merging interactions based on gradient boosting decision tree[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 649-655.
[6] Qing-long MENG,Xiao-xiao REN,Wen-qiang WANG,Yang LI,Cheng-yan XIONG. HVAC demand response strategy experiment and simulation considering active energy storage[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1175-1184.
[7] Fa-ming HUANG,Zhong-shan CAO,Chi YAO,Qing-hui JIANG,Jia-wu CHEN. Landslides hazard warning based on decision tree and effective rainfall intensity[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 472-482.
[8] Fa-sheng MIAO,Yi-ping WU,Lin-wei LI,Kang LIAO,Yang XUE. Prediction of joint roughness coefficient of rock mass based on Boosting-decision tree C5.0[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(3): 483-490.
[9] Chang CAI,Yi-xiang HUANG,Hong-wen XING. State recognition for fuselage join based on gradient boosting tree[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1274-1281.
[10] Bing XU,Xiao LIU,Zi-yang WANG,Fei-hu LIU,Jun LIANG. Fusion decision model for vehicle lane change with gradient boosting decision tree[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1171-1181.
[11] DU Ming-yu, BAO Guan-jun, YANG Qing-hua, WANG Zhi-heng, ZHANG Li-bin. Novel method in pattern recognition of hand actions based on improved support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1239-1246.
[12] SHAO Xue-feng, FENG Biao, HU Nan, HUANG Yuan-kai, ZHU Zi-qin, JIANG Ping, FAN Li-wu. Non-isothermal characterization on thermal storage/release performance of sugar alcohols and their binary eutectic mixtures[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 50-58.
[13] WANG Cheng-long, LI Cheng, FENG Yi-ping, RONG Gang. Dispatching rule extraction method for job shop scheduling problem[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 421-429.
[14] DING Qing, FANG Xin, FAN Li-wu, CHENG Guan-hua, YU Zi-tao, HU Ya-cai. Effect of hybrid nanofillers on thermal conductivity of composite phase change materials[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 330-335.
[15] XIAO Yu-qi, GAN Xi-zi, ZENG Yi, FAN Li-wu, HONG Rong-hua, YU Zi-tao, HU Ya-cai. Effects of carbon nanotube fillers on performance of phase change energy storage-based heat sinks[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1732-1738.