Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (2): 426-436    DOI: 10.3785/j.issn.1008-973X.2024.02.020
    
Hydrogen storage capacity planning for multiple types of microgrids considering shared trading mechanism
Yiming SHANG(),Weiqing WANG*(),Xiaozhu LI,Chengkang GUO,Sizhe YAN
Engineering Research Center of Education Ministry for Renewable Energy Power Generation and Grid-connected Control, Xinjiang University, Urumqi 830047, China
Download: HTML     PDF(1851KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The capacity planning method for multi-type microgrid shared hydrogen energy storage system considering the shared trading mechanism was proposed by considering the characteristics of hydrogen storage in multi-energy supply and storage in order to promote the consumption of new energy in regional distribution grids and solve the difficulty of traditional forms of energy storage in meeting the long-term storage demand brought about by the intermittent generation of new energy. The basic framework of multi-microgrid energy trading with hydrogen storage configured by microgrid cluster operators was designed by considering multiple regulation needs of heterogeneous microgrids. Then the complex interaction of interests between hydrogen storage and multiple microgrids was considered during shared operation as well as the demand response of electricity and heat within microgrids. A pricing mechanism based on the master-slave game for shared hydrogen storage transactions was proposed to ensure the sustainable development of the sharing model. The capacity planning for shared hydrogen energy storage was analyzed in order to reduce the investment costs for microgrid cluster operators and ensure the shared benefits. Results show that the proposed capacity planning method can shorten the payback period of hydrogen energy storage for microgrid cluster operators by 2.36 years.



Key wordsshared hydrogen energy storage      microgrid      shared transaction      master-slave game      capacity planning     
Received: 13 July 2023      Published: 23 January 2024
CLC:  TM 73  
Corresponding Authors: Weiqing WANG     E-mail: 1191985334@qq.com;wwq59@xju.edu.cn
Cite this article:

Yiming SHANG,Weiqing WANG,Xiaozhu LI,Chengkang GUO,Sizhe YAN. Hydrogen storage capacity planning for multiple types of microgrids considering shared trading mechanism. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 426-436.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.02.020     OR     https://www.zjujournals.com/eng/Y2024/V58/I2/426


计及共享交易机制的多微网氢储能容量规划

为了促进区域配电网新能源电力的就地消纳、解决传统储能形式难以满足由新能源间断性发电带来的长时存储需求,考虑氢储能的多能联产联储特性,提出计及共享交易机制的多类型微网共享氢储能系统容量规划方法. 考虑异质性微网的多种调节需求,设计由微电网群运营商配置氢储能的多微网能源交易基本框架. 考虑氢储能在共享运营时与多微网间复杂的利益交互关系,计及微网内部的电热需求响应,提出基于主从博弈的共享氢储能交易定价机制,以保证共享模式的可持续发展. 对共享氢储能的容量规划进行研究,降低微电网群运营商的投资成本,保证微电网群运营商的共享收益. 算例分析结果表明,利用所提的容量规划方法,能够缩短微电网群运营商的氢储能投资回收年限2.36 a.


关键词: 共享氢储能,  微电网,  共享交易,  主从博弈,  容量规划 
Fig.1 Architecture of microgrid cluster shared hydrogen energy storage system
Fig.2 Master-slave game interaction architecture
Fig.3 Flowchart of microgrid operation control strategy
Fig.4 Base day load and new energy output curve of microgrid 1
Fig.5 Base day load and new energy output curve of microgrid 2
Fig.6 Base day load and new energy output curve of microgrid 3
参数数值参数数值
$ {\xi _{{\text{ele}}}} $/(元·kW?1) 2850 $ \gamma $/% 10
$ {\xi _{{\text{fue}}}} $/(元·kW?1) 3800 L/a 20
$ {\xi _{{{\text{H}}_{\text{2}}}}} $/(元·m?3) 330 ${L_{ {\text{C} }{ {\text{H} }_{\text{4} } } }}$/(J·m?3 3.622×107
$ {\eta }_{\text{ch}}^{{\text{H}}_{\text{2}}}、{\eta }_{\text{dis}}^{\text{e}} $/% 98 $ {L_{{{\text{H}}_{\text{2}}}}} $/(J·m?3 1.246×107
$ {\eta }_{\text{ele}}^{{\text{H}}_{\text{2}}}、{\eta }_{\text{fue}}^{\text{e}} $/% 60 $ \eta _{{\text{MT}}}^{\text{e}} $/% 30
$ {\eta }_{\text{ele}}^{\text{h}}、{\eta }_{\text{fue}}^{\text{h}} $/% 88 $ \eta _{{\text{MT}}}^{\text{h}} $/% 60
Tab.1 Hydrogen energy storage configuration cost and efficiency parameters
场景主体Qele/kWQfue/kW$Q^{{\rm{H}}_2} $/(kW·h)
场景1 MGCO 3265 653 10611
场景2 MGCO 3446 689 11609
场景3 微网1 1057 263 4822
微网2 1884 0 1585
微网3 1173 1007 6936
总和 4114 1270 13343
Tab.2 Comparison of capacity allocation result for hydrogen storage system
场景主体Uele/%Ufue/%$U_{{\rm{H}}_2} $/%
场景1 MGCO 71.51 38.28 68.9
场景2 MGCO 68.69 37.92 69.51
场景3 微网1 58.66 34.22 52.72
微网2 59.43 63.73
微网3 59.28 29.79 65.61
总和 59.19 30.7 60.72
Tab.3 Comparison of equipment utilization of hydrogen storage system
场景$ {C_{1}} $/元$ {C_{ 2}} $/元$ {C_{3}} $/元MGCO
$ C_{{\text{grid}}}^{\text{e}} $/元$ C_{{\text{grid}}}^{\text{h}} $/元$ C_{{\text{MGCO}}}^{ 1} $/元$ C_{{\text{MGCO}}}^{ 2} $/元$ C_{{\text{MGCO}}}^{3} $/元$ C_{{\text{inv}}}^{} $/元$ F_{{\text{MGCO}}}^{} $/元
场景1 4638.77 14543.14 2188.53 20704.64 ?9073.98 4582.03 14543.14 2188.53 4919.71 4763.33
场景2 3704.82 12010.34 1924.22 19746.74 ?9691.62 2796.912 12010.33 1924.22 5236.23 1440.01
场景3 5129.18 16819.31 2689.24 18209.54 ?9041.28 2567.79 11225.31 ?310.28 0 4314.56
Tab.4 Earnings of each subject
Fig.7 Sales price of microgrid cluster operator
Fig.8 Energy interaction in each micro-grid self-assigned hydrogen storage mode
Fig.9 Energy interaction in shared hydrogen storage mode across microgrids
[1]   田浩, 黄文焘, 余墨多, 等 交直流混合独立微网互联变换器自适应双向下垂控制策略[J]. 中国电机工程学报, 2022, 42 (19): 7063- 7074
TIAN Hao, HUANG Wentao, YU Moduo, et al Adaptive bidirectional droop control strategy for the interlinking converter in the islanding hybrid AC/DC microgrid[J]. Proceedings of the CSEE, 2022, 42 (19): 7063- 7074
[2]   赵福林, 张通, 马光, 等 考虑源-荷波动的电力系统灵活性运行域研究[J]. 浙江大学学报: 工学版, 2021, 55 (5): 935- 947
ZHAO Fulin, ZHANG Tong, MA Guang, et al Study on flexible operation region of power system considering source and load fluctuation[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (5): 935- 947
[3]   熊宇峰, 陈来军, 郑天文, 等 考虑电热气耦合特性的低碳园区综合能源系统氢储能优化配置[J]. 电力自动化设备, 2021, 41 (9): 31- 38
XIONG Yufeng, CHEN Laijun, ZHENG Tianwen, et al Optimal configuration of hydrogen energy storage in low-carbon park integrated energy system considering electricity-heat-gas coupling characteristics[J]. Electric Power Automation Equipment, 2021, 41 (9): 31- 38
[4]   尹文良, 刘琳, 张存山, 等 含制氢储能的混合传动风电系统建模与运行特性分析[J]. 电力自动化设备, 2020, 40 (10): 64- 70
YIN Wenliang, LIU Lin, ZHANG Cunshan, et al Modeling andoperation performance analysis of hybrid drive wind powergeneration system with hydrogen energy storage[J]. Electric Power Automation Equipment, 2020, 40 (10): 64- 70
[5]   DIAO H B, LI P Q. Coordinated and optimized allocation of electrical/thermal/cold energy storage in regional integrated energy system [C]//12th IEEE PES Asia-Pacific Power and Energy Engineering Conference. Nanjing: IEEE, 2020: 1-5.
[6]   李奇, 赵淑丹, 蒲雨辰, 等 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36 (3): 486- 495
LI Qi, ZHAO Shudan, PU Yuchen, et al Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36 (3): 486- 495
[7]   滕云, 王泽镝, 金红洋, 等 用于电网调节能力提升的 电热氢多源协调储能系统模型[J]. 中国电机工程学报, 2019, 39 (24): 7209- 7217
TENG Yun, WANG Zedi, JIN Hongyang, et al A model and coordinated optimization for the multi energy storage system of electricity heat hydrogen to regulation enhancement of power grid[J]. Proceedings of the CSEE, 2019, 39 (24): 7209- 7217
[8]   WANG X, LI B, WANG Y W, et al A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system[J]. Applied Energy, 2022, 310: 118472
doi: 10.1016/j.apenergy.2021.118472
[9]   侯慧, 刘鹏, 黄亮, 等 考虑不确定性的电-热-氢综合能源系统规划[J]. 电工技术学报, 2021, 36 (Supple.1): 133- 144
HOU Hui, LIU Peng, HUÁNG Liang, et al Planning of electricity-heat-hydrogen integrated energy system considering uncertainties[J]. Transactions of China Electrotechnical Society, 2021, 36 (Supple.1): 133- 144
[10]   李笑竹, 陈来军, 殷骏, 等 面向低碳供能的多园区共享氢储能系统容量规划[J]. 高电压技术, 2022, 48 (7): 2534- 2544
LI Xiaozhu, CHEN Laijun, YIN Jun, et al Capacity planning of mul-tiple parks shared hydrogen energy storage system for low-carbon energy supply[J]. High Voltage Engineering, 2022, 48 (7): 2534- 2544
[11]   CUI S C, WANG Y W, SHI Y, et al Community energy cooperation with the presence of cheating behaviors[J]. IEEE Transactions on Smart Grid, 2021, 12 (1): 561- 573
doi: 10.1109/TSG.2020.3022792
[12]   芮涛, 李国丽, 胡存刚, 等 考虑电价机制的微电网群主从博弈优化方法[J]. 中国电机工程学报, 2020, 40 (8): 2535- 2545
RUI Tao, LI Guoli, HU Cungang, et al Stackelberg game optimization method for microgrid cluster considering electricity price mechanism[J]. Proceedings of the CSEE, 2020, 40 (8): 2535- 2545
[13]   司杨, 陈来军, 陈晓弢, 等 基于分布鲁棒的风−氢混合系统氢储能容量优化配置[J]. 电力自动化设备, 2021, 41 (10): 3- 10
SI Yang, CHEN Laijun, CHEN Xiaotao, et al Optimal capacity allocation of hydrogen energy storage in wind-hydrogen hybrid system based on distributionally robust[J]. Electric Power Automation Equipment, 2021, 41 (10): 3- 10
[14]   熊宇峰, 司杨, 郑天文, 等 基于主从博弈的工业园区综合能源系统氢储能优化配置[J]. 电工技术学报, 2021, 36 (3): 507- 516
XIONG Yufeng, SI Yang, ZHENG Tianwen, et al Optimal configuration of hydrogen storage in industrial park integrated energy system based on stackelberg game[J]. Transactions of China Electrotechnical Society, 2021, 36 (3): 507- 516
[15]   黄明, 吴勇, 文习之, 等 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33 (4): 39- 42
HUANG Ming, WU Yong, WEN Xizhi, et al Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas and Heat, 2013, 33 (4): 39- 42
[16]   李笑竹, 王维庆 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报: 工学版, 2021, 55 (1): 177- 188
LI Xiaozhu, WANG Weiqing Bi-level robust game optimal scheduling of regional comprehensive energy system based on Copula-RCVaR model[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (1): 177- 188
[17]   LI Y, WANG B, YANG Z, et al Hierarchical stochastic scheduling of multi-community integrated energy systems in uncertain environments via stackelberg game[J]. Applied Energy, 2022, 308: 118392
doi: 10.1016/j.apenergy.2021.118392
[18]   李鹏, 吴迪凡, 李雨薇, 等 基于综合需求响应和主从博弈的多微网综合能源系统优化调度策略[J]. 中国电机工程学报, 2021, 41 (4): 1307- 1321
LI Peng, WU Difan, LI Yuwei, et al Optimal dispatch of multi-microgrids integrated energy system based on integrated demand response and stackelberg game[J]. Proceedings of the CSEE, 2021, 41 (4): 1307- 1321
[1] Yang LI,Rong QI,Ming-guang DAI. Linear active disturbance rejection control with adjustable compensation factor applied for outer voltage control of inverter[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1279-1288.
[2] TANG Ya-jie, JIANG Quan-yuan, CHENG Zhong-lin, GE Yan-feng, WANG Lin-qing. Key technology of scalable SCADA system for microgrids[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1558-1565.
[3] HU Ke yong, XU Fang, AI Qing lin, XU Hong wei, OU Yang jing. Redundant group control strategy for microgrid with multi-inverters[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1608-1617.
[4] LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 536-544.
[5] LU Ze han, LAN Zhou, WU Jing ying, WANG Zhen, XIN Huan hai. Small signal stability analysis of synchronized control based microgrid under multiple operating conditions[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 0-.
[6] LEI Zhi-li, AI Xin, CUI Ming-yong, LIU Xiao. Simulation on series harmonic resonance of microgrid
based on modal assessment method
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 178-184.