Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Mechanical and Electrical Engineering     
Redundant group control strategy for microgrid with multi-inverters
HU Ke yong, XU Fang, AI Qing lin, XU Hong wei, OU Yang jing
1. Key Laboratory of E&M, Ministry of Education&Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China; 
2. Qianjiang College, Hangzhou Normal University, Hangzhou 310036, China
Download:   PDF(2334KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Three layer control method was proposed in order to solve the problem of redundancy control of multiple inverters in microgrid system. The first one was the new improved droop control. Through the introduction of inductive virtual impedance, the output impedance of inverters were only determined by the filter inductance value and a double loop droop controller with excellent stability was designed. The second was synchronous control. The phase and voltage amplitude information at both sides of point of common coupling was used to give feedback synchronization regulation for the droop control based on the principle of synchronous grid-connected control which was a positive feedback of amplitude and frequency reference value. The third was compensation control, the compensation models of amplitude and frequency were designed Combined with the transfer function and droop control structure. in order to make up for the steady-state error in the process of droop. Results show that the control strategy can meet the reliable operation of microgrid, having good dynamic and steady performance. The strategy truly realizes the redundant group control of multi-inverters in microgrid.



Published: 01 August 2016
CLC:  TM 464  
Cite this article:

HU Ke yong, XU Fang, AI Qing lin, XU Hong wei, OU Yang jing. Redundant group control strategy for microgrid with multi-inverters. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1608-1617.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.08.025     OR     http://www.zjujournals.com/eng/Y2016/V50/I8/1608


面向多逆变器的微电网冗余群控策略

为了解决在微电网系统中多台逆变器的冗余群控的问题,提出3层式控制方法,第1层为新型改进的下垂控制,通过引入感性虚拟阻抗,使得逆变器等效输出阻抗仅由滤波电感决定,设计出稳定性优良的双环下垂控制器;第2层为同步控制,基于幅值和频率参考值正反馈的同步并网控制原理,采用公共连接点断路器两侧相位及电压幅值信息,对下垂控制进行反馈同步调节|第3层为补偿控制,结合补偿传递函数及下垂控制结构,设计出电压幅值与频率的补偿量模型,来弥补下垂过程中产生的稳态误差.结果表明,该控制策略可以满足微电网的可靠运行,具有良好的动态和稳态性能,真正实现了微电网中多台逆变器的冗余群控管理.

[1] 王成山,李鹏.分布式发电、微网与智能配电网的发展与挑战[J].电力系统自动化,2010,34(2): 10-16.
WANG Chengshan,LI Peng.Development and challenges of distributed generation, the microgrid and smart distribution system [J]. Automation of Electric Power Systems,2010,34(2): 10-16.
[2] 赵争鸣,雷一,贺凡波,等.大容量并网光伏电站技术综述[J].电力系统自动化,2011,35(12): 101-107.
ZHAO Zhengming, LEI Yi, HE Fanbo, et al.. Overview of largescale gridconnected photovoltaic power plants [J]. Automation of Electric Power Systems, 2011, 35(12): 101-107.
[3] REIGOSA D, BRIZ F, BLANCO C, et al. Active islanding detection for multiple parallelconnected inverterbased distributed generators using highfrequency signal injection [J]. IEEE Transactions on Power Electronics, 2014, 29(3): 1192-1199.
[4] TAHER S A, ZOLFAGHARI M. Designing robust controller to improve currentsharing for parallelconnected inverterbased DGs considering line impedance impact in microgrid networks [J]. International Journal of Electrical Power & Energy Systems, 2014, 63: 625-644.
[5] HE J, Li Y W, BOSNJAK D, et al. Investigation and active damping of multiple resonances in a parallelinverterbased microgrid [J]. IEEE Transactions on Power Electronics, 2013, 28(1): 234-246.
[6] SHAFIEE Q, GUERRERO J M, VASQUEZ J C. Distributed secondary control for islanded microgrids—A novel approach [J]. IEEE Transactions on Power Electronics, 2014, 29(2): 1018-1031.
[7] BIDRAM A, DAVOUDI A. Hierarchical structure of microgrids control system [J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1963-1976.
[8] LASSETER R H. Smart distribution: Coupled microgrids [J]. Proceedings of the IEEE, 2011, 99(6): 1074-1082.
[9] CAI N, MITRA J. A multilevel control architecture for masterslave organized microgrids with power electronic interfaces [J]. Electric Power Systems Research, 2014, 109(109): 819.
[10] EL MOURSI M S, ZEINELDIN H H, KIRTLEY J L, et al. A dynamic master/slave reactive powermanagement scheme for smart grids with distributed generation [J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1157-1167.
[11] BORREGA M, MARROYO L, GONZALEZ R, et al. Modeling and control of a master–slave PV inverter with Nparalleled inverters and threephase threelimb inductors [J]. IEEE Transactions on Power Electronics, 2013, 28(6): 2842-2855.
[12] LU X, GUERRERO J M, SUN K, et al. An improved droop control method for dc microgrids based on low bandwidth communication with dc bus voltage restoration and enhanced current sharing accuracy [J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812.
[13] SCHIFFER J, ORTEGA R, ASTOLFI A, et al. Conditions for stability of droopcontrolled inverterbased microgrids [J]. Automatica, 2014, 50(10): 2457-2469.
[14] SAVAGHEBI M, JALILIAN A, VASQUEZ J C, et al. Autonomous voltage unbalance compensation in an islanded droopcontrolled microgrid [J]. IEEE Transactions on Industrial Electronics, 2013, 60(4): 1390-1402.
[15] SIMPSONPORCO J W, DRFLER F, BULLO F. Synchronization and power sharing for droopcontrolled inverters in islanded microgrids [J]. Automatica, 2013, 49(9): 2603-2611.
[16] ROWE C N, SUMMERS T J, BETZ R E, et al. Arctan power–frequency droop for improved microgrid stability [J]. IEEE Transactions on Power Electronics, 2013, 28(8): 3747-3759.
[17] ZHANG Y, MA H. Theoretical and experimental investigation of networked control for parallel operation of inverters [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1961-1970.
[18] KIM J, GUERRERO J M, RODRIGUEZ P, et al. Mode adaptive droop control with virtual output impedances for an inverterbased flexible AC microgrid [J]. IEEE Transactions on Power Electronics, 2011, 26(3): 689-701.
[19] GODOY R B, PINTO J O P, CANESIN C A, et al. Differentialevolutionbased optimization of the dynamic response for parallel operation of inverters with no controller interconnection [J]. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2859-2866.
[20] 何致远, 韦巍. 基于虚拟磁链的PWM整流器直接功率控制研究[J]. 浙江大学学报:工学版, 2004, 38(12):1619-1622.
HE Zhiyuan, WEI Wei. Study on direct power control of PWM rectifier based on virtual flux [J]. Journal of Zhejiang University :Engineering Science, 2004, 38(12): 1619-1622.
[21] 刘学文, 屈稳太, 陈勇. 双馈系统中SVPWM有源逆变新技术[J]. 浙江大学学报:工学版,2011, 45(9): 1609-1615.
LIU Xuewen, QU Wentai, CHEN Yong. Novel SVPWM control strategy of active inverter in doublefed system[J]. Journal of Zhejiang University: Engineering Science, 2011, 45(9): 1609-1615.
[22] 张国月, 曲轶龙, 齐冬莲,等. 基于重复控制的三电平光伏逆变技术[J]. 浙江大学学报:工学版, 2012,46(7): 1339-1344.
ZHANG Guoyue, QU Yilong, QI Donglian, et al.Threelevel photovoltaic inverter technology based on repetitive control [J]. Journal of Zhejiang University :Engineering Science, 2012, 46(7): 1339-1344.
[23] 曾争, 杨家强. 一种频率自适应滑动平均滤波器的电网同步方法[J]. 浙江大学学报:工学版, 2014, 48(9): 1696-1703.
ZENG Zheng, YANG Jiaqiang. A grid synchronization method using frequency adaptive moving average filter [J]. Journal of Zhejiang University :Engineering Science, 2014, 48(9): 1696-1703.
[1] ZHANG Ben ben,XU Fang,WU Le bin,AI Qing ling. Adaptive resonance damping of LCL filtered grid connected inverter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(1): 180-185.
[2] ZHENG Wei-feng, MA Hao, HE Xiang-ning. Inverter repetitive control method based on parameter model identification[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(5): 896-903.
[3] ZHU Ming-lei, ZHAO Rong-xiang. Parallel convertor system with high speed distributed master-slave control method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(11): 2031-2037.