|
|
Thermodynamic cycle design of steam Carnot battery based on phase change material |
Xiaojie LIN1,2(),Jiahao XU1,2,Peng SUN3,Wei ZHONG2,*(),Yacai HU2 |
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China 2. Jiaxing Research Institute, Zhejiang University, Jiaxing 314024, China 3. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China |
|
|
Abstract A new steam Carnot battery based on high-temperature and low-temperature phase change materials was proposed in order to analyze the new route of multi-energy complementation of integrated energy system in industrial parks. A thermodynamic cycle calculation model considering the equipment performance and mass flow rate was established. The effects of design parameters and multi-stage compression structure on the system heat pump coefficient, round-trip efficiency, power storage loss and efficiency of the heating were analyzed. The phase change temperature of low-temperature phase change material and the phase change temperature of high-temperature phase change material are the main factors affecting the performance of steam Carnot battery. The high cycle performance region of steam Carnot battery was obtained. The parameters and structure of the steam Carnot battery were optimized. Results showed that the round-trip efficiency could reach 56.96%, the coefficient of performance of the heat pump could reach 2.55, and the efficiency of the heating could reach 68.74%.
|
Received: 02 March 2023
Published: 07 November 2023
|
|
Fund: 国家自然科学基金资助项目(51806190);国家重点研发计划资助项目(2019YFE0126000) |
Corresponding Authors:
Wei ZHONG
E-mail: xiaojie.lin@zju.edu.cn;zhongw@zju.edu.cn
|
基于相变材料的蒸汽卡诺电池热力学循环设计
为了研究工业园区综合能源系统的多能互补新路线,提出基于高低温相变材料的新型蒸汽卡诺电池. 建立计及设备性能与质量流量的热力学循环计算模型,分析设计参数、多级压缩结构对系统热泵系数、循环效率、储电损失与供热?效率的影响. 通过探究发现,低温相变材料的相变温度和高温相变材料的相变温度是影响蒸汽卡诺电池性能的主要因素,得到蒸汽卡诺电池的高循环性能区. 优化蒸汽卡诺电池的参数与结构,结果表明,循环效率可达56.96%,热泵系数可达2.55,供热?效率可达68.74%.
关键词:
卡诺电池,
储能,
热力学分析,
蒸汽生产,
余热利用
|
|
[1] |
谢小荣, 马宁嘉, 刘威, 等 新型电力系统中储能应用功能的综述与展望[J]. 中国电机工程学报, 2023, 43 (1): 158- 169 XIE Xiaorong, MA Ningjia, LIU Wei, et al Functions of energy storage in renewable energy dominated power systems: review and prospect[J]. Proceedings of the CSEE, 2023, 43 (1): 158- 169
|
|
|
[2] |
SAMEER H, JOHANNES L A review of large-scale electrical energy storage[J]. International Journal of Energy Research, 2015, 39 (9): 1179- 1195
doi: 10.1002/er.3294
|
|
|
[3] |
ARMAN A, BREYER C Assessment of geological resource potential for compressed air energy storage in global electricity supply[J]. Energy Conversion and Management, 2018, 169 (1): 161- 173
|
|
|
[4] |
OLIVIER D, FRATE G, PILLAI A, et al Carnot battery technology: a state-of-the-art review[J]. Journal of Energy Storage, 2020, 32: 101756
doi: 10.1016/j.est.2020.101756
|
|
|
[5] |
李中浩, 余娟, 杨知方, 等. 精准计及大规模储能电池寿命的电力系统经济调度 [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html. LI Zhonghao, YU Juan, YANG Zhifang, et al. Economic dispatch of power system accurately considering the life of large-scale energy storage battery [EB/OL]. [2023-03-01]. https://kns.cnki.net/kcms/detail/11.2107.TM.20220902.1535.003.html.
|
|
|
[6] |
ABDELRAHMAN H, DONOGHUE L, SANCHEZ C, et al Thermodynamic analysis of high-temperature pumped thermal energy storage systems: refrigerant selection, performance and limitations[J]. Energy Reports, 2020, 6 (7): 147- 159
|
|
|
[7] |
张琼, 王亮, 徐玉杰, 等 热泵储电技术研究进展[J]. 中国电机工程学报, 2018, 38 (1): 178- 185 ZHANG Qiong, WANG Liang, XU Yujie, et al Research progress in pumped heat electricity storage system: a review[J]. Proceedings of the CSEE, 2018, 38 (1): 178- 185
doi: 10.13334/j.0258-8013.pcsee.162031
|
|
|
[8] |
DESRUES T, RUER J, MARTY P, et al A thermal energy storage process for large scale electric applications[J]. Applied Thermal Engineering, 2010, 30 (5): 425- 432
doi: 10.1016/j.applthermaleng.2009.10.002
|
|
|
[9] |
HOWES J Concept and development of a pumped heat electricity storage device[J]. Proceedings of the IEEE, 2012, 100 (2): 493- 503
doi: 10.1109/JPROC.2011.2174529
|
|
|
[10] |
SMALLBONE A, JULCH V, WARDLE R, et al Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies[J]. Energy Conversion and Management, 2017, 152 (15): 221- 228
|
|
|
[11] |
杨鹤, 杜小泽 布雷顿循环热泵储能的性能分析与多目标优化[J]. 中国电机工程学报, 2022, 42 (1): 196- 211 YANG He, DU Xiaoze Performance analysis and multi-objective optimization of Brayton cycle pumped thermal energy storage[J]. Proceedings of the CSEE, 2022, 42 (1): 196- 211
|
|
|
[12] |
MCTIGUE J D, WHITE A J, MARKIDES C N Parametric studies and optimisation of pumped thermal electricity storage[J]. Applied Energy, 2015, 137 (1): 800- 811
|
|
|
[13] |
KIM Y, SHIN D, LEE S, et al Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage [J]. Energy, 2013, 49 (1): 484- 501
|
|
|
[14] |
WANG G, ZHANG X Thermodynamic analysis of a novel pumped thermal energy storage system utilizing ambient thermal energy and LNG cold energy[J]. Energy Conversion and Management, 2017, 148 (15): 1248- 1264
|
|
|
[15] |
STEINMANN W D The CHEST (compressed heat energy storage) concept for facility scale thermo mechanical energy storage[J]. Energy, 2014, 69 (1): 543- 552
|
|
|
[16] |
陶志强, 赵庆, 唐豪杰, 等 应用于工业余热的超临界二氧化碳布雷顿循环系统的热力学和㶲分析[J]. 中国电机工程学报, 2019, 39 (23): 6944- 6951 TAO Zhiqiang, ZHAO Qing, TANG Haojie, et al Thermodynamic and exergetic analysis of supercritical carbon dioxide Brayton cycle system applied to industrial waste heat recovery[J]. Proceedings of the CSEE, 2019, 39 (23): 6944- 6951
doi: 10.13334/J.0258-8013.PCSEE.190204
|
|
|
[17] |
NING X, HUANG Z, LUO Z, et al Inorganic salt hydrate for thermal energy storage[J]. Applied Sciences, 2017, 7 (12): 1317
doi: 10.3390/app7121317
|
|
|
[18] |
STEPHAN H, KONIG-HAAGEN A, BRUGGEMANN D Thermophysical characterization of MgCl2· 6H2O, xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES) [J]. Materials, 2017, 10 (4): 444
doi: 10.3390/ma10040444
|
|
|
[19] |
COSTA S C, KENISARIN M A review of metallic materials for latent heat thermal energy storage: thermophysical properties, applications, and challenges[J]. Renewable and Sustainable Energy Reviews, 2022, 154: 111812
doi: 10.1016/j.rser.2021.111812
|
|
|
[20] |
MATTEO M, MERCANGOZ M, HEMRLE J, et al Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles [J]. Energy, 2013, 58 (1): 571- 587
|
|
|
[21] |
CARLOS R, PALACIO J, VENTURINI O, et al Exergetic and economic comparison of ORC and Kalina cycle for low temperature enhanced geothermal system in Brazil[J]. Applied Thermal Engineering, 2013, 52 (1): 109- 119
doi: 10.1016/j.applthermaleng.2012.11.012
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|