Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (2): 304-316    DOI: 10.3785/j.issn.1008-973X.2024.02.009
    
Aquila optimizer based on phasor operator and flow direction operator
Yu ZHOU1(),Zexuan PEI1,Peichong WANG2,Bo CHEN1
1. College of Electrical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2. College of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
Download: HTML     PDF(1251KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A multi-strategy improved aquila optimizer (MIAO) was proposed aiming at the disadvantages of low search efficiency and easy to fall into local optimal value in aquila optimization algorithm. Generalized normal distribution optimizer (GNDO) was added to AO, and the result obtained by GNDO was compared with the result of AO in the first stage. Then the best value under the two algorithms was selected. The search space was expanded and the quality of solution was improved. Phasor operators were used to transform the second phase into an adaptive non-parametric optimization in order to improve the high-dimensional optimization ability of the AO. The flow operator was used in the third stage of AO aiming at the problems of reduced population diversity and insufficient local exploitation at late iterations of the AO. Then the information can be transferred between each individual. The utilization rate of population information was improved, and the local exploitation capability of the AO was enhanced. Comparative analysis and optimization results of 16 test functions and Wilcoxon rank sum test showed that MIAO optimization ability and convergence speed were greatly improved. The MIAO algorithm was used to solve reducer design problem in order to verify the practicality and feasibility of MIAO algorithm. Comparative analysis of practical engineering optimization problems shows that MIAO algorithm has certain advantages in processing realistic optimization problems.



Key wordsaquila optimizer      generalized normal distribution optimization algorithm      phasor operator      flow direction operator      test function      Wilcoxon rank sum test     
Received: 21 June 2023      Published: 23 January 2024
CLC:  TP 301  
Fund:  国家自然科学基金资助项目(U1504622,31671580);河南省高等学校青年骨干教师培养计划资助项目(2018GGJS079);河北省高等学校科学技术研究资助项目(ZD2020344)
Cite this article:

Yu ZHOU,Zexuan PEI,Peichong WANG,Bo CHEN. Aquila optimizer based on phasor operator and flow direction operator. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 304-316.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.02.009     OR     https://www.zjujournals.com/eng/Y2024/V58/I2/304


引入相量算子和流向算子的天鹰优化算法

针对天鹰优化算法搜索效率不足,容易陷入局部最优的缺点,提出多策略改进天鹰优化算法(MIAO). 引入广义正态分布优化算法(GNDO),将该算法得出的结果与天鹰优化算法第1阶段得出的结果进行比较,筛选出这2种优化算法下的最优值. 该操作扩大了搜索空间,提高了解的质量. 引入相量算子,将第2阶段变为自适应的非参数优化,提高算法的高维优化能力. 针对天鹰优化算法在迭代后期存在种群多样性降低、局部开发能力不足的问题,在天鹰算法的第3阶段引入流向算子,使信息可以在每个个体间相互传递,提高种群信息的利用率,增强天鹰优化算法的开发性能. 通过对16个测试函数寻优对比分析以及Wilcoxon秩和检验可知,MIAO的寻优能力和收敛速度都有较大的提升. 为了验证MIAO算法的实用性和可行性,采用所提算法求解减速器设计问题,通过实际工程优化问题的实验对比分析可知,MIAO算法在处理现实优化问题上具有一定的优越性.


关键词: 天鹰优化算法,  广义正态分布优化算法,  相量算子,  流向算子,  测试函数,  Wilcoxon秩和检验 
Fig.1 Function behavior of $ p\left( {\theta _i^t} \right) $ and $ g\left( {\theta _i^t} \right) $
Fig.2 Changes of $ W $
算法参数参数值算法参数参数值
SOA${f_{\rm{c}}}$2PPSO
U1
V1
PSOC11.494 45FDA$ \varpi $相邻径
流数量
1
C21.494 45
SSAR2[0, 1.0]AOS0.01
ST0.8U0.005 65
$ \beta $1.5
$ \omega $0.005
GNDOMIAOS0.01
Tab.1 Parameter setting of MIAO and comparison algorithm
编号函数维数范围最优值
$ {f_1} $Schwefel2.2130,100[?100,100]0
$ {f_2} $Quartic30,100[?1.28,1.28]0
$ {f_3} $Bohachevsky30,100[?100,100]0
$ {f_4} $Sum-Squares30,100[?5.12,5.12]0
$ {f_5} $Sum-Power30,100[?1,1]0
$ {f_6} $Rastrigin30,100[?5.12,5.12]0
$ {f_7} $Ackley30,100[?32,32]0
$ {f_8} $Griewank30,100[?600,600]0
$ {f_9} $Drop-Wave30,100[?5.12,5.12]?1
$ {f_{10}} $Eggholder30,100[?512,512]?959.6407
$ {f_{11}} $Shekel’s Foxholes2[?65,65]1
$ {f_{12}} $Kowalik4[?5,5]0.0003
$ {f_{13}} $Shekel4[0,10]?10.1532
$ {f_{14}} $Hartman6[0,1]?3.32
$ {f_{15}} $Composition Function 230,100[?100,100]2200
$ {f_{16}} $Composition Function 3
30,100[?100,100]2300
Tab.2 Test functions
函数算法最优值平均值标准差函数算法最优值平均值标准差
$ {f_1} $SOA0.58033.48192.6799$ {f_5} $SOA3.462 7×10?75.348 9×10?61.334 1×10?7
PSO0.00531.43051.4963PSO1.153 5×10?89.214 3×10?53.662 5×10?6
SSA7.048 8×10?879.411 5×10?608.995 4×10?60SSA5.913 0×10?886.441 5×10?727.014 5×10?72
GNDO23.088129.315416.5622GNDO1.458 1×10?93.578 9×10?72.665 4×10?7
PPSO0.31260.39430.0023PPSO1.088 2×10?81.920 6×10?82.546 1×10?9
FDA53.475660.255811.5469FDA7.905 2×10?1191.481 4×10?1136.541 1×10?113
AO2.297 2×10?752.445 1×10?591.223 6×10?60AO1.251 1×10?1041.546 6×10?883.145 2×10?88
MIAO1.093 0×10?1602.364 1×10?1389.363 7×10?139MIAO2.546 4×10?1934.025 7×10?1602.541 9×10?160
$ {f_2} $SOA0.11202.33343.1452$ {f_6} $SOA2.801715.825520.9482
PSO0.00110.00166.114 6×10?4PSO3.99368.98262.5335
SSA2.561 3×10?40.00200.0014SSA000
GNDO6.79157.22353.6525GNDO320.12411.52168.3251
PPSO0.03480.05020.5233PPSO20.355439.840838.4450
FDA5.206 9×10?42.314 4×10?36.447 0×10?3FDA000
AO9.429 6×10?51.234 5×10?42.333 1×10?6AO000
MIAO1.346×10?76.321 4×10?72.655 3×10?8MIAO000
$ {f_3} $SOA0.45022.22343.5562$ {f_7} $SOA0.00430.27090.3008
PSO9.175 8×10?84.172 4×10?63.012 5×10?6PSO0.00660.45570.5398
SSA02.125 5×10?2811.222 0×10?281SSA8.881 8×10?168.881 8×10?160
GNDO5.5511×10?175.5511×10?171.235 4×10?19GNDO11.204814.71936.9952
PPSO000PPSO0.06550.97960.8023
FDA4.996 0×10?161.247 0×10?113.288 4×10?11FDA 4.440 9×10?154.440 9×10?150
AO000AO8.881 8×10?168.881 8×10?160
MIAO000MIAO8.881 8×10?168.881 8×10?160
$ {f_4} $SOA0.0943.45135.2102$ {f_8} $SOA1.144 5×10?61.59351.4952
PSO0.16341.22472.8542PSO1.063 9×10?53.023 4×10?36.214 2×10?3
SSA3.420 5×10?1634.562 2×10?1446.213 8×10?145SSA000
GNDO887.38902.5872.5569GNDO42.663048.54829.3354
PPSO102.59244.58325.11PPSO0.00110.00573.521 4×10?2
FDA1.063 7×10?822.640 5×10?793.021 1×10?79FDA000
AO3.044 1×10?1523.205 6×10?1396.112 0×10?143AO000
MIAO000MIAO000
Tab.3 Results of test function (dim=30,${f_1} - {f_8}$)
函数算法最优值平均值标准差函数算法最优值平均值标准差
$ {f_9} $SOA?0.9750?0.86200.6335$ {f_{15}} $SOA2.300×1032.300 4×1030.6635
PSO?1?0.98080.0235PSO2.300×1032.300×1030
SSA?1?10SSA2.300×1032.300×1030
GNDO?1?0.93620.4655GNDO2.300×1032.300×1032.523 1×10?4
PPSO?1?0.93620.0536PPSO2.300×1032.300×1030
FDA?1?0.93630.0016FDA2.300×1032.300×10311.3250
AO?1?10AO2.300×1032.300×1030
MIAO?1?10MIAO2.300×1032.300×1030
$ {f_{10}} $SOA?954.6222?932.050232.1507$ {f_{16}} $SOA2.450 0×1032.455 5×10323.2264
PSO?66.8437?66.84370PSO2.450 0×1032.450 0×10310.3210
SSA?959.6407?956.62145.6316SSA2.450 0×1032.450 0×1038.1243
GNDO?959.6406?959.64062.547 6×10?5GNDO2.450 0×1032.450 0×10311.2356
PPSO?64.3969?61.65415.3991PPSO2.450 0×1032.450 0×1036.8401
FDA?959.6407?959.64070FDA2.433 5×1032.433 5×10316.3205
AO?959.6405?954.241010.2659AO2.450 0×1032.450 0×1036.0213
MIAO?959.6407?959.64070MIAO2.433 3×1032.433 3×1036.1089
Tab.4 Results of test function (dim=30,$ {f_9} , {f_{10}},{f_{15}} - {f_{16}} $)
函数算法最优值平均值标准差函数算法最优值平均值标准差
$ {f_{11}} $SOA2.19945.87925.1739$ {f_{13}} $SOA?9.8922?9.39070.4532
PSO12.670512.67050PSO?5.0522?5.05220
SSA2.98212.56311.3330SSA?10.1532?10.15320
GNDO0.9980.9980GNDO?10.1532?10.15320
PPSO12.670512.67050PPSO?5.0877?5.08770
FDA0.9981.99202.3254FDA?10.1532?5.08763.3321
AO0.9980.9980AO?10.1532?10.15270.2140
MIAO0.9980.9980MIAO?10.1532?10.15320
$ {f_{12}} $SOA0.00830.00800.0053$ {f_{14}} $SOA?2.8215?2.65311.1233
PSO6.782 2×10?49.159 4×10?45.735 4×10?4PSO?3.3220?3.11230.023
SSA3.074 9×10?37.012 2×10?34.775 2×10?3SSA?3.3220?3.21560.1543
GNDO3.074 8×10?43.074 9×10?42.324 7×10?4GNDO?3.3219?3.32191.2354×10?5
PPSO5.325 4×10?46.327 7×10?44.325 4×10?4PPSO?3.3220?3.31823.2214×10?4
FDA0.00040.00133.2621×10?3FDA?3.1404?3.07490.6325
AO5.679 0×10?48.994 0×10?43.112 2×10?4AO?3.1037?3.09612.6480
MIAO 3.000 0×10?4 3.078 3×10?49.231 4×10?6MIAO?3.3220?3.28344.6213×10?3
Tab.5 Fixed dimension test functions
函数算法最优值平均值标准差函数算法最优值平均值标准差
$ {f_1} $SOA86.554294.135220.9621$ {f_6} $SOA0.03411.12362.6557
PSO0.62200.62540.0239PSO157.3364163.636125.3142
SSA3.3646×10?553.3345×10?317.223 4×10?30SSA000
GNDO23.155233.312016.3251GNDO362.36384.2132.6520
PPSO0.74860.89980.3654PPSO258.24274.6561.0320
FDA89.724393.10869.2320FDA000
AO9.466 2×10?788.253×10?758.223 6×10?76AO000
MIAO3.371 6×10?1586.223 7×10?1292.678 4×10?129MIAO000
$ {f_2} $SOA0.13781.23552.6341$ {f_7} $SOA1.223 4×10?44.337 8×10?33.707 1×10?3
PSO0.22010.44360.6520PSO1.87522.03140.6321
SSA7.3240×10?30.00212.3114×10?3SSA8.881 8×10?168.881 8×10?160
GNDO5.64888.06415.6630GNDO11.721713.40945.3241
PPSO1.75922.09000.4354PPSO2.33232.13540.3542
FDA4.487 9×10?45.832 5×10?42.665 2×10?4FDA4.440 9×10?154.440 9×10?150
AO9.782 8×10?53.521 1×10?44.695 7×10?4AO8.881 8×10?168.881 8×10?160
MIAO 1.704 1×10?5 4.122 0×10?4 5.314 2×10?4MIAO 8.881 8×10?16 8.881 8×10?160
$ {f_3} $SOA0.00210.93281.5631$ {f_8} $SOA0.014356.442983.9514
PSO1.913 5×10?93.556 4×10?72.635 7×10?7PSO0.05270.06001.3255e-3
SSA000SSA000
GNDO5.551 1×10?175.551 1×10?172.392 8×10?19GNDO61.113874.351222.2511
PPSO000PPSO0.10390.11730.0062
FDA000FDA000
AO000AO000
MIAO000MIAO000
$ {f_4} $SOA0.01514.15318.3361$ {f_9} $SOA?1?0.98890.1264
PSO66.354885.364251.3260PSO?1?10
SSA7.572 5×10?803.214 6×10?654.012 6×10?65SSA?1?10
GNDO1141.21148.743.2651GNDO?1?0.96320.0023
PPSO180.23210.247.3521PPSO?1?10
FDA3.624 7×10?795.624 4×10?759.214 4×10?75FDA?1?10
AO2.246 3×10?1573.514 4×10?1336.331 4×10?133AO?1?10
MIAO000MIAO?1?10
$ {f_5} $SOA2.460 5×10?60.05530.3662$ {f_{10}} $SOA?957.9990?950.637410.5231
PSO1.887 8×10?81.223 6×10?73.263 1×10?8PSO?66.8437?66.84370
SSA5.341 9×10?1131.324 9×10?502.312 6×10?50SSA?894.3315?888.163443.6612
GNDO1.135 3×10?74.714 2×10?103.256 4×10?10GNDO?959.6406?959.64064.125 0×10?4
PPSO6.154 3×10?96.734 3×10?72.663 4×10?9PPSO?66.0970?65.42111.3325
FDA3.257 8×10?1162.647 6×10?1133.654 2×10?113FDA?959.4607?959.46054.332 1×10?3
AO1.481 3×10?952.794 9×10?293.654 2×10?29AO?959.6407?-959.64043.412 2×10?3
MIAO4.185×10?1784.893 1×10?1521.233 0×10?152MIAO?959.6407?959.64061.256 1×10?3
Tab.6 Results of test function (dim=100,${f_1} - {f_{10}}$)
函数算法最优值平均值标准差函数算法最优值平均值标准差
$ {f_{15}} $SOA230023004.097 0$ {f_{16}} $SOA2 440.82 47638.4974
PSO2300230013.1361PSO245024508.2315
SSA2300230011.8003SSA245024502.286 9×10?4
GNDO 23002.301 1×1035.5983GNDO 2450 2451.85.8500
PPSO 23002.300 0×1031.1117PPSO 2450 2450.11.7050
FDA 23002.300 8×1036.1601FDA 2433.3 2435.912.1862
AO23002.300 2×1033.4566AO2450 2450.24.5863
MIAO2.293 8×1032.301 6×10311.4552MIAO2 433.32 433.75.2753
Tab.7 Results of test function (dim=100, ${f_{15}} , \;{f_{16}}$)
Fig.3 MIAO and convergence curves of seven comparison algorithms
函数SOAPSOSSAGNDOPPSOFDAAO
phphphphphphph
$ {f_1} $1.816 5×10?411.826 7×10?411.826 7×10?411.816 5×10?411.826 7×10?411.826 7×10?411.826 7×10?41
$ {f_2} $1.816 5×10?411.826 7×10?413.298 4×10?411.816 5×10?411.826 7×10?413.298 4×10?414.236 2×10?41
$ {f_3} $6.386 4×10?516.386 4×10?51N/A08.745 0×10?51N/A0N/A0N/A0
$ {f_4} $8.745 0×10?518.745 0×10?518.745 0×10?518.745 0×10?518.745 0×10?518.745 0×10?518.745 0×10?51
$ {f_5} $1.826 7×10?411.826 7×10?410.025711.826 7×10?411.826 7×10?411.826 7×10?411.826 7×10?41
$ {f_6} $2.165 0×10?516.340 3×10?51N/A07.235 2×10?516.304 3×10?51N/A0N/A0
$ {f_7} $6.386 4×10?516.340 3×10?51N/A06.386 4×10?516.340 3×10?51N/A0N/A0
$ {f_8} $6.386 4×10?516.340 3×10?51N/A06.386 4×10?516.340 3×10?51N/A0N/A0
$ {f_9} $6.386 4×10?510.368 10N/A0N/A0N/A0N/A0N/A0
$ {f_{10}} $3.226 4×10?416.340 3×10?513.221 4×10?413.226 4×10?416.340 3×10?513.221 4×10?410.02061
$ {f_{11}} $1.333 4×10?811.020 3×10?811.322 4×10?812.355 4×10?1011.333 4×10?411.632 4×10?412.355 4×10?101
$ {f_{12}} $1.205 9×10?1211.210 8×10?1213.469 1×10?811.203 4×10?1211.325 0×10?1214.358 7×10?811.523 4×10?51
$ {f_{13}} $1.826 7×10?412.092 6×10?712.981 6×10?812.836 4×10?811.532 1×10?712.354 1×10?712.364 1×10?61
$ {f_{14}} $1.333 4×10?811.020 3×10?811.020 3×10?811.032 0×10?811.354 2×10?816.352 4×10?612.330 6×10?41
$ {f_{15}} $2.453 2×10?312.442 5×10?312.442 5×10?312.442 5×10?312.442 5×10?312.442 5×10?312.463 0×10?31
$ {f_{16}} $2.453 2×10?312.442 5×10?312.442 5×10?312.442 5×10?312.442 5×10?312.442 5×10?312.442 5×10?31
Tab.8 Results of Wilcoxon rank sum test
Fig.4 Reducer design structure
算法变量最优值最小质量/g
$ b $$ {z_1} $$ {z_2} $$ {l_1} $$ {l_2} $$ {d_1} $$ {d_2} $
SOA[21]3.06820.717518.16607.53807.31823.44515.34673384.0246
PSO[22] 3.6000 0.7000 17.0000 8.3000 7.30003.35255.28653054.5907
SSA[23]3.24530.716617.52638.09697.85393.64415.29633295.7734
GNDO3.49090.740317.24828.14808.04663.30885.36883411.4819
PPSO3.60000.700017.000 07.30007.95003.35055.50003179.9491
FDA3.46300.720017.00727.50387.31583.37405.28653148.1579
AO[17]3.48580.700017.39208.19087.35083.27675.30223150.6512
MIAO3.28990.700017.01287.89907.77083.36425.30343024.8417
Tab.9 Comparison of results of reducer design problem
Fig.5 Reducer convergence curve
[1]   UMER M, SADIQ S, REEMAH M, et al Face mask detection using deep convolutional neural network and multi-stage image processing[J]. Image and Vision Computing, 2023, 133 (10): 46- 57
[2]   TIAN J G, HAN D Y, REZA H K, et al Deep learning-based open set multi-source domain adaptation with complementary transferability metric for mechanical fault diagnosis[J]. Neural Networks, 2023, 162 (6): 69- 82
[3]   JESUS J, RUIZ A, URDA D, et al A freight inspection volume forecasting approach using an aggregation/disaggregation procedure, machine learning and ensemble models[J]. Neurocomputing, 2020, 391: 282- 291
doi: 10.1016/j.neucom.2019.06.109
[4]   LI C, BAI L, LIU W, et al A multi-task memory network with knowledge adaptation for multimodal demand forecasting[J]. Transportation Research Part C: Emerging Technologies, 2021, 131: 103352
doi: 10.1016/j.trc.2021.103352
[5]   GHAREHCHOPOGH F S, NAMAZI M, EBRAHIMI L, et al Advances in sparrow search algorithm: a comprehensive survey[J]. Archives of Computational Methods in Engineering, 2023, 30: 427- 455
doi: 10.1007/s11831-022-09804-w
[6]   MUHAMMAD Y, RAJA M A Z, ALTAF M, et al Design of fractional comprehensive learning PSO strategy for optimal power flow problems[J]. Applied Soft Computing, 2022, 130: 109638
[7]   XUE J, SHEN B A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8 (1): 22- 34
doi: 10.1080/21642583.2019.1708830
[8]   MIRJALILI S, LEWIS A The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51- 67
doi: 10.1016/j.advengsoft.2016.01.008
[9]   LI S N, LI W, TANG J W, et al A new evolving operator selector by using fitness landscape in differential evolution algorithm[J]. Information Sciences, 2023, 624 (8): 709- 731
[10]   KAHLOUL S, DJAAFAR Z, BOUALEM B, et al A multi-external archive-guided Henry gas solubility optimization algorithm for solving multi-objective optimization problems[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104588
doi: 10.1016/j.engappai.2021.104588
[11]   KARAMI H, VALIKHAN A M, FARZIN S Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems[J]. Computers and Industrial Engineering, 2021, 156 (4): 23- 39
[12]   FATEHI M, TOLORI A, ENRICO Z An advanced teaching-learning-based algorithm to solve unconstrained optimization problems[J]. Intelligent Systems with Applications, 2023, 17 (42): 53- 74
[13]   KUMAR M, ANADA J K, SAPATAPHY S C Socio evolution and learning optimization algorithm: a socio-inspired optimization methodology[J]. Future Generation Computer Systems, 2018, 81: 252- 272
doi: 10.1016/j.future.2017.10.052
[14]   MOHAMMAD H, SHAHRAKI N, TAGHIAN S, et al An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: 113917
doi: 10.1016/j.eswa.2020.113917
[15]   邓志诚, 孙辉, 赵嘉, 等 方波触发勘探与开发的粒子群优化算法[J]. 自动化学报, 2022, 48 (12): 3042- 3061
DENG Zhicheng, SUN Hui, ZHAO Jia, et al Particle swarm optimization with square wave triggered exploration and exploitation[J]. Acta Automatica Sinica, 2022, 48 (12): 3042- 3061
doi: 10.16383/j.aas.c190842
[16]   AMIRTEIMOORI A, MAHDAVI I, SOLIMANPUR M, et al A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation[J]. Computers and Industrial Engineering, 2022, 173 (5): 125- 143
[17]   ABUALIGAH L, YOUSRI D, ELAZIZ M A, et al Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157 (10): 50- 72
[18]   GHAMEHI M, AKBARI E, RAHIMNEJAD A, et al Phasor particle swarm optimization: a simple and efficient variant of PSO[J]. Soft Computing: A Fusion of Foundations, Methodologies and Applications, 2019, 23 (19): 1701- 1718
[19]   BUALIGAH L, YOUSRI D, ELAZIZ M, et al Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157 (9): 157- 171
[20]   李玥,穆维松,褚晓泉,等 基于改进量子粒子群的K-means聚类算法及其应用[J]. 控制与决策, 2022, 37 (4): 839- 850
LI Yue, MU Weisong, CHU Xiaoquan, et al K-means clustering algorithm based on improved quantum particle swarm optimization and its application[J]. Control and Decision, 2022, 37 (4): 839- 850
[21]   EESA A S, HASSAN M M, ARABO W K Letter: application of optimization algorithms to engineering design problems and discrepancies in mathematical formulas[J]. Applied Soft Computing, 2023, 11 (5): 23- 64
[22]   HUANG F Z, WANG L, HE Q An effective co-evolutionary differential evolution for constrained optimization[J]. Applied Mathematics and Computation, 2007, 186 (1): 340- 356
[1] Wan-liang WANG,Zhong-kui CHEN,Fei WU,Zheng WANG,Meng-jiao YU. Dynamic multi-objective optimization algorithm based on individual prediction[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(11): 2133-2146.
[2] Chuan-hua ZHOU,Li-chun CAO,Jia-yi ZHOU,Feng ZHAN. Identification of critical nodes in temporal networks based on graph convolution union computing[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 930-938.
[3] Ya-feng WANG,Li-hua ZHOU,Wei CHEN,Li-zhen WANG,Hong-mei CHEN. Community search with mutual information maximization over heterogeneous information networks[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 287-298.
[4] Xue-jiao LIU,Qing-wu SONG,Ying-jie XIA. Secure computation offloading scheme for matrix in Internet of vehicles based on blockchain[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 144-154.
[5] Jin-sheng YANG,Hao WANG,Zhen GAO,Zhao-hui GUO. Double RSA accumulator based stateless transaction verification scheme[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 178-189.
[6] Xiao-feng FU,Li NIU. Micro-expression classification based on deep convolution and auto-encoder enhancement[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1948-1957.
[7] Xiao-bo CHEN,Ling CHEN,Shu-rong LIANG,Yu HU. Robust cooperative target tracking under heavy-tailed non-Gaussian localization noise[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 967-976.
[8] Xiao-xin DU,Hao WANG,Lian-he CUI,Jin-qi LUO,Yan LIU,Jian-fei ZHANG,Yi-ping WANG. Dragonfly algorithm based on clustering and detection elite guidance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 977-986.
[9] Wan-liang WANG,Ya-wen JIN,Jia-cheng CHEN,Guo-qing LI,Ming-zhi HU,Jian-hang DONG. Multi-objective particle swarm optimization algorithm with multi-role and multi-strategy[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 531-541.
[10] Si-han DONG,Jun-chang XIN,Kun HAO,Zhong-ming YAO,Jin-yi CHEN. A join query optimization algorithm in multi-blockchain environment[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 313-321.
[11] Guo-wen XIONG,Min ZHANG,Wen-xin XU. Vehicle routing optimization of two-echelon opening and closing hybrid based on crowdsourcing mode[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2397-2408.
[12] Jing-li WU,Guo-dong YI,Le-miao QIU,Shu-you ZHANG. Path planning of mobile robots in mixed obstacle space with high temperature[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1806-1814.
[13] Ze-qiang ZHANG,Pei-yu XU,Jin JIANG,Yu ZHANG. Optimization of parallel disassembly line balancing problem with different operators between workstations[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1795-1805.
[14] Jian-sha LU,Wen-qian ZHAI,Jia-feng LI,Wen-chao YI,Hong-tao TANG. Multi-constrained vehicle routing optimization based on improved hybrid shuffled frog leaping algorithm[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 259-270.
[15] Song CHENG,Zong-feng ZOU. Optimization and experiment of heliostat surface shape bracing structure based on plane truss[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2310-2320.