Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (5): 967-976    DOI: 10.3785/j.issn.1008-973X.2022.05.014
    
Robust cooperative target tracking under heavy-tailed non-Gaussian localization noise
Xiao-bo CHEN(),Ling CHEN,Shu-rong LIANG,Yu HU
Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
Download: HTML     PDF(2293KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The statistical properties of the localization data are unknown and the localization data are susceptible to outlier interference, which affects the cooperative target tracking performance. Aiming at the problem, a robust cooperative target tracking method for heavy-tailed non-Gaussian localization noise was proposed. It was assumed that the localization noise followed multivariate Student’s t-distribution and a joint Bayesian estimation model of target state and localization noise parameters was constructed. To overcome the difficulty of computing joint posterior distribution owing to the coupling of target state and noise distribution parameters, the variational Bayesian inference and the mean-field theory were applied to decouple the joint posterior distribution and convert the problem of joint estimation of target state and localization noise parameters into a optimization problem. Alternative optimization was implemented to achieve recursive estimation of system parameters. The proposed cooperative target tracking method was evaluated experimentally. Simulation results showed that when unknown outliers exist in localization data, the proposed algorithm has better tracking robustness.



Key wordscooperative target tracking      Student’s t-distribution      variational Bayesian inference      outlier noise      robustness     
Received: 05 June 2021      Published: 31 May 2022
CLC:  TP 301.6  
Fund:  国家自然科学基金资助项目(61773184);国家重点研发计划资助项目(2018YFB0105000);江苏省六大人才高峰高层次人才资助项目(JXQC-007)
Cite this article:

Xiao-bo CHEN,Ling CHEN,Shu-rong LIANG,Yu HU. Robust cooperative target tracking under heavy-tailed non-Gaussian localization noise. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 967-976.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.05.014     OR     https://www.zjujournals.com/eng/Y2022/V56/I5/967


重尾非高斯定位噪声下鲁棒协同目标跟踪

针对定位数据的统计特性未知且易受异常值干扰而影响协同目标跟踪性能的问题,提出一种重尾非高斯定位噪声下的鲁棒协同目标跟踪方法. 该方法假设定位噪声服从多元学生t-分布,建立联合估计目标状态与定位噪声参数的贝叶斯模型. 针对目标状态与噪声分布参数相互耦合而难以计算联合后验分布的问题,应用变分贝叶斯推断原理和平均场理论对后验分布进行解耦,将目标状态与定位噪声参数的联合后验分布估计问题转化为最优化问题,以交替优化的方式实现系统参数的在线递推估计. 对提出的协同目标跟踪方法进行测试. 仿真结果表明,当定位数据中存在未知的野值噪声时,提出的协同跟踪算法具有较好的鲁棒性.


关键词: 协同目标跟踪,  学生t-分布,  变分贝叶斯推断,  野值噪声,  鲁棒性 
Fig.1 Probability density function of Student’s t-distribution for different $ \lambda $ values
Fig.2 Illustration of translation and rotation of coordinate system
Fig.3 Probabilistic graph model of cooperative target tracking
Fig.4 Illustration of cooperative target tracking
Fig.5 Error comparison of different online tracking algorithms
算法 ARMSE
$ {\varphi _1} $/m $ {\chi _1} $/% $ {\varphi _2} $/(m·s?1) $ {\chi _2} $/%
KF-ST 0.185 01 ? 0.097 41 ?
EKF-CT 0.171 99 7.0 0.093 06 4.5
VB-CT 0.160 40 13.3 0.087 43 10.2
VB-RCT 0.152 80 17.4 0.083 61 14.2
Tab.1 Performance analysis of tracking error obtained by different algorithms
Fig.6 Position ARMSE in different outlier ratios
Fig.7 Schematic diagram of non-Gaussian distribution location noise of CV in different degrees of anomaly
Fig.8 Tracking errors of different algorithms when sampling outliers from different distributions
分布 异常程度 pARMSE/m
KF EKF-CT VB-CT VB-RCT
$S\left( { {\boldsymbol{v} }_k^2;{\boldsymbol{0}},{\boldsymbol A},15} \right)$ $ {\boldsymbol A} = 15{\boldsymbol{R}} $ 0.185 01 0.166 35 0.151 25 0.153 42
$ {\boldsymbol A} = 25{\boldsymbol{R}} $ 0.185 01 0.171 99 0.160 40 0.152 80
$ {\boldsymbol A} = 35{\boldsymbol{R}} $ 0.185 01 0.175 22 0.169 33 0.152 39
$U\left( { {\boldsymbol{v} }_k^2; - {\boldsymbol{a}},{\boldsymbol{a}}} \right)$ ${\boldsymbol{a}} = 15{\boldsymbol{R} }$ 0.187 60 0.167 49 0.148 83 0.155 28
${\boldsymbol{a}} = 30{\boldsymbol{R} }$ 0.187 60 0.174 86 0.158 82 0.154 78
${\boldsymbol{a}} = 45{\boldsymbol{R} }$ 0.187 60 0.178 31 0.164 19 0.154 12
$L\left( { {\boldsymbol{v} }_k^2;{\boldsymbol{0}},{\boldsymbol{b}}} \right)$ ${\boldsymbol{ b}} = 10{\boldsymbol{R} }$ 0.187 60 0.163 32 0.153 40 0.155 02
${\boldsymbol{b}} = 15{\boldsymbol{R} }$ 0.187 60 0.168 40 0.156 86 0.154 72
${\boldsymbol{b}} = 20{\boldsymbol{R} }$ 0.187 60 0.171 82 0.160 33 0.154 44
Tab.2 ARMSE of different algorithms when sampling outliers from different distributions
Fig.9 Position ARMSE under different forgetting factors
Fig.10 Variation of tracking errors with number of variational iterations
[1]   裴汉林 基于深度学习的自动驾驶环境感知技术研究[J]. 内燃机与配件, 2021, (4): 193- 194
PEI Han-lin Research on autonomous driving environment perception technology based on Deep Learning[J]. Internal Combustion Engine and Parts, 2021, (4): 193- 194
doi: 10.3969/j.issn.1674-957X.2021.04.089
[2]   RANDESH A, TRIVEDI M M No Blind Spots: full-surround multi-object tracking for autonomous vehicles using cameras and LiDARs[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4 (4): 588- 599
doi: 10.1109/TIV.2019.2938110
[3]   DHAMANAM N, KATHIRVELU M, RAO T G Review of environment perception for intelligent vehicles[J]. International Journal of Engineering and Management Research, 2019, 9 (2): 13- 17
[4]   石章松, 刘志坤, 吴中红. 目标定位跟踪方法与实践[M]. 北京: 电子工业出版社, 2019.
[5]   SAWARAGI Y, KATAYAMA T Performance loss and design method of Kalman filters for discrete-time linear systems with uncertainties[J]. International Journal of Control, 1970, 12 (1): 163- 172
doi: 10.1080/00207177008931830
[6]   NATTAPOL A, KUNRUTAI P, BENIAWAN T, et al A novel adaptive resampling for sequential Bayesian filtering to improve frequency estimation of time-varying signals[J]. Heliyon, 2021, 7 (4): e06768
doi: 10.1016/j.heliyon.2021.e06768
[7]   BEAL M J. Variational algorithms for approximate Bayesian inference [D]. London: University College London, 2003.
[8]   SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational approximations [J]. IEEE Transactions on Automatic Control. 2009, 54(3): 596-600.
[9]   沈忱, 徐定杰, 沈锋, 等 基于变分推断的一般噪声自适应卡尔曼滤波[J]. 系统工程与电子技术, 2014, 36 (8): 1466- 1472
SHEN Chen, XU Ding-jie, SHEN Feng, et al Generalized noises adaptive Kalman filtering based on variational inference[J]. Systems Engineering and Electronics, 2014, 36 (8): 1466- 1472
doi: 10.3969/j.issn.1001-506X.2014.08.03
[10]   余东平, 何谢, 齐扬阳, 等 基于变分贝叶斯推理的多目标无源定位算法[J]. 南京邮电大学学报:自然科学版, 2018, 38 (2): 48- 53,59
YU Dong-ping, HE Xie, QI Yang-yang, et al Variational Bayesian inference based multi-target device-free localization algorithm[J]. Journal of Nanjing University of Posts and Telecommunications: Science and Technology, 2018, 38 (2): 48- 53,59
[11]   ZHU H, LEUNG H, HE Z A variational Bayesian approach to robust sensor fusion based on Student-t distribution[J]. Information Sciences, 2013, 221: 201- 214
doi: 10.1016/j.ins.2012.09.017
[12]   HUANG Y L, ZHANG Y G, LI N, et al A novel robust student's t-based Kalman filter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53 (3): 1545- 1554
doi: 10.1109/TAES.2017.2651684
[13]   喻尚, 杨艳, 张正轩, 等 车载无线通信技术浅析[J]. 汽车电器, 2021, (3): 46- 47,50
YU Shang, YANG Yan, ZHANG Zheng-xuan, et al Discussion on vehicle wireless communication technology[J]. Autoelectric Parts, 2021, (3): 46- 47,50
doi: 10.3969/j.issn.1003-8639.2021.03.017
[14]   KEVVAN A Joint use of DSRC and C-V2X for V2X communications in the 5.9 GHz ITS band[J]. IET Intelligent Transport Systems, 2020, 15 (2): 213- 224
[15]   HUANG C, HU P, LIAN J Online optimum velocity calculation under V2X for smart new energy vehicles[J]. Transactions of the Institute of Measurement and Control, 2021, 43 (10): 2368- 2377
doi: 10.1177/0142331221997280
[16]   KIRILL K, ALEXANDER M, BORIS M Robust data fusion of UAV navigation measurements with application to the landing system[J]. Remote Sensing, 2020, 12 (23): 3849
doi: 10.3390/rs12233849
[17]   陈宇波, 宋迎春 非高斯噪声下的车载GPS信号定位算法[J]. 中南大学学报:自然科学版, 2010, 41 (4): 1462- 1466
CHEN Yu-bo, SONG Ying-chun A Bayes filter algorithm with non-Gaussian noises based on location of vehicular GPS[J]. Journal of Central South University: Science and Technology, 2010, 41 (4): 1462- 1466
[18]   胡淼淼, 敬忠良, 董鹏, 等 基于T分布变分贝叶斯滤波的SINS/GPS组合导航[J]. 浙江大学学报:工学版, 2018, 52 (8): 1482- 1488
HU Miao-miao, JING Zhong-liang, DONG Peng, et al Variational Bayesian filtering based on Student-t distribution for SINS/GPS integrated navigation[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (8): 1482- 1488
[19]   BISHOP C M. Pattern recognition and machine learning[M]. Cambridge: Springer, 2006.
[20]   XIAO G C, SONG X L, CAO H T, et al Augmented extended Kalman filter with cooperative Bayesian filtering and multi-models fusion for precise vehicle localisations[J]. IET Radar, Sonar and Navigation, 2020, 14 (11): 1815- 1826
doi: 10.1049/iet-rsn.2020.0155
[1] Qi SHEN,Yan ZHAO,Xiao-wei ZHOU,Xiao-ran YUAN. Image Hashing algorithm based on structure and gradient[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1525-1533.
[2] Na LV,Chuang LIU,Ke-fan CHEN,Fang-bo CAO. Software defined airborne network election algorithm considering controller failure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 785-793.
[3] Hao SUI,Gao-feng QIN,Xiang-bo CUI,Xin-jiang LU. Robust fuzzy T-S modeling method based on minimizing mean and variance of modeling error[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 382-387.
[4] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 422-428.
[5] LI Tao, WANG Shi-tong. Incremental zero-order TSK fuzzy classifier and its robust version[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1901-1911.
[6] YANG Hui lin, HUANG Zhi gang, LIU Jiu wen, DU Yuan feng. WIFI fingerprinting localization based on Kernel Fuzzy C means II Clustering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1126-1133.
[7] ZHAO Chan yuan, LU Zhi qiang, CUI Wei wei. Proactive scheduling optimization on flow shops with random machine breakdowns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 641-649.
[8] ZHU Guang-ming, JIANG Rong-xin, ZHOU Fan, TIAN Xiang, CHEN Yao-wu. Robust Kalman filtering algorithm with estimation of measurement biases[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1343-1349.
[9] LUO Lin, SU Hong ye, BAN Lan. Nonparametric bayesian based on mixture of dirichlet process in application of fault detection[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2230-2236.
[10] MA Teng, ZHAO Xing zhong, GAO Bo qing, WU Hui. Combined shape and topology optimization of free form structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1946-1951.
[11] ZHANG Cheng, LI Zhi-an, GAO Bo-qing, Dong Shi-lin. Robustness analysis of reticular shells based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 818-823.
[12] SHAN Yan-ling, GAO Bo-qing. Analysis of latticed shell structure’s robust configurations based on continuum topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2118-2124.
[13] WANG Xiu-jun, HU Xie-he. An improved control strategy of single neuron PID[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1498-1501.