Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 785-793    DOI: 10.3785/j.issn.1008-973X.2019.04.020
    
Software defined airborne network election algorithm considering controller failure
Na LV(),Chuang LIU(),Ke-fan CHEN,Fang-bo CAO
School of Informational and Navigation, Air Force Engineering University, Xi’an 710077, China
Download: HTML     PDF(1039KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A distributed control node election (DCNE) algorithm was proposed aiming at the problem of unrecoverable failure of the controller in the airborne network environment. The election weight was calculated by considering the neighbor node density, the average flow request amount and the controller processing capability in order to ensure the performance of the control node after the fault recovery. Then the election message was updated through the establishment and maintenance of the neighbor node information. A method of transmitting and processing election messages according to the node status was proposed. The proposed algorithm was simulated and verified from the perspective of control domain performance after fault recovery. The experimental results show that the DCNE method has better performance in terms of maximum delay and flow deployment overhead compared with the existing methods. The DCNE method can be better applied to airborne networks.



Key wordsairborne network      control plane      robustness      fault recovery      controller node election     
Received: 22 June 2018      Published: 28 March 2019
CLC:  TP 302  
Cite this article:

Na LV,Chuang LIU,Ke-fan CHEN,Fang-bo CAO. Software defined airborne network election algorithm considering controller failure. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 785-793.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.020     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/785


考虑控制器故障的软件定义机载网络选举算法

针对机载网络环境下控制器发生不可恢复故障的问题,提出分布式的控制节点选举(DCNE)算法. 为了保证故障恢复后控制节点的性能,综合考虑邻居节点密度、平均流请求量和控制器处理能力,计算选举权值. 通过邻居节点信息的建立和维护实现选举消息的更新,提出依据节点状态传递和处理选举消息的算法. 从故障恢复后的控制域性能角度对DCNE算法进行仿真验证. 结果表明,与现有算法对比,DCNE算法在最大时延和流部署开销指标上具有更好的性能,能够较好地适用于机载网络环境.


关键词: 机载网络,  控制平面,  健壮性,  故障恢复,  控制节点选举 
Fig.1 Controller architecture and controller failure diagram
Fig.2 Schematic diagram of Election message transfer process
Fig.3 DCNE calculation process diagram
Fig.4 Post Controller message
Fig.5 Disassembly and merging of lost control node group
参数 参数值
场景区域/km $200 \times 200$
失控节点个数 10~30
传输距离/km 80
节点移动模型 随机路点
节点移动速度/(m·s-1 340
平均流请求量/(packet·ms-1 0~2.0
Tab.1 Parameter setting of simulation scenario for single controller failure
对比算法 主要描述
BF 常用于网络前期规划阶段CPP问题求解中,依据选取的性能尺度和搜索算法来确定最优情况下控制器的位置,可以作为最优解评估选举结果的有效性.
ReON 基于网络功能虚拟化技术,将网络各节点本地模块计算的网络时延和损失率信息发送给控制器进行排序,得到最优的备份控制节点.
Tab.2 Description of different fault recovery algorithms
Fig.6 Maximum delay indicator at different fault moments
Fig.7 Flow deployment overhead indicators at different faults
Fig.8 Maximum delay indicator under different number of nodes
Fig.9 Flow deployment overhead indicator under different number of nodes
[1]   SEZER S, SCOTT S, CHOUHAN P K, et al Are we ready for SDN? Implementation challenges for software-defined networks[J]. IEEE Communications Magazine, 2013, 51 (7): 36- 43
doi: 10.1109/MCOM.2013.6553676
[2]   KATSALIS K, ROFOEE B Implementation experience in multi-domain SDN: challenges, consolidation and future directions[J]. Computer Networks, 2018, 129: 142- 158
[3]   CHENG B N, BLOCK F J, HAMILTON B R, et al Design considerations for next-generation airborne tactical networks[J]. IEEE Communications Magazine, 2014, 52 (5): 138- 145
doi: 10.1109/MCOM.2014.6815904
[4]   THANGAMURUGAN K A. Software defined networking (SDN) for aeronautical communications[C] // Digital Avionics Systems Conference. Marrakech: IEEE, 2014: 1–20.
[5]   SAMPIGETHAYA K. Software-defined networking in aviation: opportunities and challenges [C] // Integrated Communication, Navigation, and Surveillance Conference. Herdon: IEEE, 2015: 1–21.
[6]   赵尚弘, 陈柯帆, 吕娜, 等 软件定义航空集群机载战术网络[J]. 通信学报, 2017, 38 (8): 140- 155
ZHAO Shang-hong, CHEN Ke-fan, LV Na, et al A software defined airborne tactical network for aeronautic[J]. Journal on Communications, 2017, 38 (8): 140- 155
[7]   ROS F J, RUIZ P M. Five nines of southbound reliability in software-defined networks [C] // ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking. Seattle: ACM, 2014: 31–36.
[8]   王文博, 汪斌强, 陈飞宇, 等 一种软件定义网络中的控制器热备份及选举算法[J]. 电子学报, 2016, 44 (4): 913- 919
WANG Wen-bo, WANG Bin-qiang, CHEN Fei-yu, et al Controller hot backup and election algorithm in software-defined networks[J]. Chinese Journal of Electronics, 2016, 44 (4): 913- 919
doi: 10.3969/j.issn.0372-2112.2016.04.023
[9]   MULLER L F, OLIVERIRA R R, LUIZELLI M C, et al. Survivor: an enhanced controller placement strategy for improving SDN survivability [C] // Global Communications Conference. Austin: IEEE, 2014: 1909–1915.
[10]   HOCK D, HARTMANN M, GEBERT S, et al. Pareto-optimal resilient controller placement in SDN-based core networks [C] // Teletraffic Congress. Krakow: IEEE, 2013: 1–9.
[11]   伊鹏, 刘邦舟, 王文博, 等 一种考虑软件定义网络控制节点故障的控制器部署和交换机迁移方法[J]. 电子与信息学报, 2017, 39 (8): 1972- 1978
YI Peng, LIU Bang-zhou, WANG Wen-bo, et al A controller deployment and switch migration approach considering the failure of control nodes in a software-defined network[J]. Journal of Electronics and Information Technology, 2017, 39 (8): 1972- 1978
[12]   吕娜, 刘创, 陈柯帆, 等 一种面向航空集群的集中控制式网络部署方法[J]. 航空学报, 2018, 38 (8): 321961
LV Na, LIU Chuang, CHEN Ke-fan, et al A centralized control network deployment method for aerospace clusters[J]. Acta Aeronautica et Astronautica Sinica, 2018, 38 (8): 321961
[13]   YAO G, BI J, LI Y, et al On the capacitated controller placement problem in software defined networks[J]. IEEE Communications Letters, 2014, 18 (8): 1339- 1342
doi: 10.1109/LCOMM.2014.2332341
[14]   LABRAOUI M, BOC M, FLADENMULLER A. Self-configuration mechanisms for SDN deployment in wireless mesh networks [C] // International Symposium on a World of Wireless, Mobile and Multimedia Networks. Macau: IEEE, 2017: 1–4.
[15]   KIM C G, WU M Leader election on tree-based centrality in ad hoc networks[J]. Telecommunication Systems, 2013, 52 (2): 661- 670
[16]   LI H, GRANDE R E D, BOUKERCHE A. An efficient CPP solution for resilience-oriented SDN controller deployment [C] // Parallel and Distributed Processing Symposium Workshops. Lake Buena Vista: IEEE, 2017: 540–549.
[17]   CASCONE C, POLLINI L, SANVITO D, et al. SPIDER: fault resilient SDN pipeline with recovery delay guarantees [C] // Netsoft Conference and Workshops. Seoul: IEEE, 2016: 296–302.
[1] Qi SHEN,Yan ZHAO,Xiao-wei ZHOU,Xiao-ran YUAN. Image Hashing algorithm based on structure and gradient[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1525-1533.
[2] Hao SUI,Gao-feng QIN,Xiang-bo CUI,Xin-jiang LU. Robust fuzzy T-S modeling method based on minimizing mean and variance of modeling error[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 382-387.
[3] LIU Wei-lun, ZHANG Heng-yang, ZHENG Bo, GAO Wei-ting. Multi-channel media access control protocol with differential services in airborne network[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 99-106.
[4] YANG Chun ning, FANG Jia wei, LI Chun, GE Hui. Hypersonic vehicle blended control methodology based on stability criterion[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 422-428.
[5] LI Tao, WANG Shi-tong. Incremental zero-order TSK fuzzy classifier and its robust version[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(10): 1901-1911.
[6] YANG Hui lin, HUANG Zhi gang, LIU Jiu wen, DU Yuan feng. WIFI fingerprinting localization based on Kernel Fuzzy C means II Clustering[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1126-1133.
[7] ZHAO Chan yuan, LU Zhi qiang, CUI Wei wei. Proactive scheduling optimization on flow shops with random machine breakdowns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 641-649.
[8] ZHU Guang-ming, JIANG Rong-xin, ZHOU Fan, TIAN Xiang, CHEN Yao-wu. Robust Kalman filtering algorithm with estimation of measurement biases[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1343-1349.
[9] MA Teng, ZHAO Xing zhong, GAO Bo qing, WU Hui. Combined shape and topology optimization of free form structure[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1946-1951.
[10] ZHANG Cheng, LI Zhi-an, GAO Bo-qing, Dong Shi-lin. Robustness analysis of reticular shells based on H∞ theory[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 818-823.
[11] SHAN Yan-ling, GAO Bo-qing. Analysis of latticed shell structure’s robust configurations based on continuum topology optimization[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2118-2124.
[12] WANG Xiu-jun, HU Xie-he. An improved control strategy of single neuron PID[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1498-1501.