[1] VOLAND R T, HUEBNER L D, MCCLINTON C R. X43A hypersonic vehicle technology development [J]. The International Academy Astronautics, 2006, 59(1): 181-191.
[2] DOMAN D B, GAMBLE B J, NGO A D. Quantized control allocation of reaction control jets and aerodynamic control surfaces [J]. Journal of Guidance, Control and Dynamics, 2009, 32(1): 13-24.
[3] HIROKAWA R, SATO K, MANABE S. Autopilot design for a missile with reaction-jet using coefficient diagram method [C]∥AIAA Guidance, Navigation and Control Conference and Exhibit. Canada: AIAA, 2001: 739-746.
[4] TAUR D R, HSU H T. A composite guidance strategy for SAAMM with side jet controls [C]∥AIAA Guidance, Navigation and Control Conference and Exhibit. Canada: AIAA, 2001.
[5] LIU Z, JIA X H. Novel back-stepping design for blended aero and reaction-jet missile autopilot [J]. Journal of Systems Engineering and Electronics, 2008, 19(1):148-153.
[6] SU S F, LEE Z J, WANG Y P. Robust and fast learning for fuzzy cerebellar model articulation controllers [J]. IEEE Transactions on Systems, Man and Cybernetics, 2006,36(1): 203-208.
[7] 王霄婷,周军,林鹏.再入飞行器变质心/RCS复合控制策略研究[J]. 西北工业大学学报, 2011, 29(2): 212-216.
WANG Xiao ting, ZHOU Jun, LIN Peng. Proposing moving centroid/RCS control strategy for reentry flight vehicle [J]. Journal of Northwestern Polytechnical University, 2011, 29(2): 212-216.
[8] GENG J, SHENG Y Z, LIU X D. Finite-time sliding mode attitude control for a reentry vehicle with blended aerodynamic surfaces and a reaction control system [J].Chinese Journal of Aeronautics, 2014, 27(4): 964-976.
[9] SONG G B, BUCK N V, AGRAWAL B N. Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper [J]. AIAA Journal of Guidance, Control and Dynamics, 1999, 22(3): 433-444.
[10] ZHANG Y Y, LI R F, X T, et al. An analysis of stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle [J]. Information Sciences, 2016, 348(20): 25-48.
[11] ZAHRINGER C, HELLER M,SACHS G. Lateral separation dynamics and stability of a two-stage hypersonic vehicle [C]∥12th AIAA International Space Planes and Hypersonic Systems and Technologies. Virginia: AIAA, 2003.
[12] TEODORESCU B C. Lateral directional oscillatory departure criteria for high angle-of-attack flight conditions [J]. University Politehnica of Bucharest Scientific Bulletin, 2006, 68(3): 45-54.
[13] GOMAN M G, KHRAMTSOVSKY A V, KOLENIKOV E N. Evaluation of aircraft performance and maneuverability by computation of attainable equilibrium sets [J]. Journal of Guidance, Control and Dynamics, 2008, 31(2): 329-339.
[14] BUSCHEK H, CALISE A J. Uncertainty modeling and fixed-order controller design for a hypersonic vehicle model [J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 42-48.
[15] SHAUGHNESSY J D, PINCKNEY Z, MCMINN J D, et al. Hypersonic vehicle simulation model: winged-cone configuration [R]. Virginia: NASA Langley Research Center, 1990.
[16] SHAO X L, WANG H L. Six-DOF modeling and simulation of a generic hypersonic vehicle for conceptual design studies [C]∥ AIAA Modeling and Simulation Technologies Conference and Exhibit, Rhode: AIAA,2004.
[17] XING L D, ZHANG K N, CHEN W H, et al. Optimal control and output feedback considerations for missile with blended aero-fin and lateral impulsive thrust [J]. Chinese Journal of Aeronautics, 2010, 23(4):401-408.
[18] INNOCENTI M, THUKRAL A. A blending strategy for missile autopilots using the simplex method [C]∥ Proceedings of the 1995 American Control Conference. Seattle: IEEE, 1995: 2163-2167.
[19] MICKLE M C, ZHU J J. Bank-to-turn roll-yaw-pitch autopilot design using dynamic nonlinear inversion and PD-eigenvalue assignment [C]∥Proceeding of the 2000 American Control Conference, Chicago: IEEE, 2000: 1359-1364. |