Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 121-129    DOI: 10.3785/j.issn.1008-973X.2024.01.013
    
Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement
Guangyao LI1,2,3(),Sida LIU1,He LI4,*(),Liangtong ZHAN2,Min XIA2
1. Key Laboratory of Urban and Engineering Safety and Disaster Reduction of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. Chongqing Research Institute of Beijing University of Technology, Chongqing 401151, China
4. The Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
Download: HTML     PDF(2571KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Enhanced gas collection cover (EGCC) was proposed in order to achieve efficient gas collection from municipal solid waste landfills in China and eliminate environmental pollution and personal safety issues caused by the disorderly release of landfill gas. This facility from top to bottom includes a HDPE geomembrane, gas collection pipes and a soil regulating layer. The Air/W module in Geo-studio software was used to analyze the gas closure performance of the EGCC and relevant influencing factors. Results show that the inherent permeability of the soil regulating layer, the extraction pressure within the gas collection pipes, and the thickness of the landfilled waste are three main factors that affect the gas closure performance of the EGCC. The maximum pressure under the HDPE geomembrane increases with the decrease in the inherent permeability of the soil regulating layer, the increase in the extraction pressure within the gas collection pipes and the increase in the thickness of the landfilled waste. A formula for estimating the arrangement spacing of the gas collection pipes based on the soil regulating layer and the extraction pressure within the gas collection pipes was proposed. It is recommended that preference should be given to locally available medium sand or coarser soils as soil regulating layers. Xiaping Landfill in Shenzhen had achieved a 7-fold increase in landfill gas collection rate from 2014 to 2019 after adopting the EGCC combined with multiple gas extraction wells, with a landfill gas collection efficiency increasing from less than 30% to over 90%.



Key wordsmunicipal solid waste landfill      landfill gas      enhanced gas collection cover (EGCC)      arrangement spacing of gas collection pipes      optimized arrangement     
Received: 12 April 2023      Published: 07 November 2023
CLC:  TU 43  
Fund:  国家自然科学基金青年资助项目(42107186);重庆市自然科学基金面上资助项目(CSTB2023NSCQ-MSX0279);软弱土与环境土工教育部重点实验室开放基金资助项目(2021P01);国家重点研发计划资助项目(2018YFC1802300)
Corresponding Authors: He LI     E-mail: geoguangyao@bjut.edu.cn;lihe2404@126.com
Cite this article:

Guangyao LI,Sida LIU,He LI,Liangtong ZHAN,Min XIA. Factors affecting gas closure capacity of enhanced gas collection cover and optimized arrangement. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 121-129.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.01.013     OR     https://www.zjujournals.com/eng/Y2024/V58/I1/121


增强型集气覆盖层闭气能力影响因素及优化布置

为了实现我国生活垃圾填埋场的高效集气,消除填埋气无序逸散造成的环境污染及人身安全问题,提出由HDPE土工膜、膜下集气管和土质调节层构成的增强型集气覆盖层(EGCC)结构. 采用Geo-studio软件中的Air/W模块,分析增强型集气覆盖层的闭气效果及其影响因素. 结果表明,土质调节层的固有渗透率、膜下集气管的抽气压力和单层填埋垃圾的厚度是影响增强型集气覆盖层闭气效果的3个主要因素. 膜下最大气压随着土质调节层的固有渗透率的降低、膜下集气管抽气压力的提高和单层填埋垃圾厚度的提高而增大. 提出基于土质调节层的固有渗透率和膜下集气管抽气压力的膜下集气管布置间距估算公式,建议优先选用当地容易获得的中砂或更粗的土料作为土质调节层. 在深圳下坪填埋场采用增强型集气覆盖层并结合集气井技术后,2014—2019年期间填埋气收集量提升7倍以上,收集率由不到30%提升至超过90%.


关键词: 垃圾填埋场,  填埋气,  增强型集气覆盖层(EGCC),  集气管间距,  优化布置 
Fig.1 Schematic diagram of enhanced gas collection cover
Fig.2 Analysis model of enhanced gas collection cover
工况编号 土质调节层 集气管 H/m
K/(10?11 m2 h/m p/kPa D/m 埋设位置
1-1 100 0.2 ?1.5 0.1 层中 5
1-2 10 0.2 ?1.5 0.1
1-3 1 0.2 ?1.5 0.1
1-4 0.1 0.2 ?1.5 0.1
1-5 0.01 0.2 ?1.5 0.1
2-1 1 0.10 ?1.5 0.1 层中 5
2-2 1 0.15 ?1.5 0.1
2-3 1 0.20 ?1.5 0.1
2-4 1 0.25 ?1.5 0.1
2-5 1 0.30 ?1.5 0.1
3-1 1 0.2 0 0.1 层中 5
3-2 1 0.2 ?0.5 0.1
3-3 1 0.2 ?1.0 0.1
3-4 1 0.2 ?1.5 0.1
3-5 1 0.2 ?2.0 0.1
4-1 1 0.2 ?1.5 0.05 层中 5
4-2 1 0.2 ?1.5 0.10
4-3 1 0.2 ?1.5 0.15
4-4 1 0.2 ?1.5 0.20
5-1 1 0.2 ?1.5 0.1 层上 5
5-2 1 0.2 ?1.5 0.1 层中
5-3 1 0.2 ?1.5 0.1 层下
6-1 1 0.2 ?1.5 0.1 层中 5
6-2 1 0.2 ?1.5 0.1 6
6-3 1 0.2 ?1.5 0.1 7
6-4 1 0.2 ?1.5 0.1 8
6-5 1 0.2 ?1.5 0.1 9
6-6 1 0.2 ?1.5 0.1 10
Tab.1 Summary of different analysis conditions for gas control performance of enhanced gas collection cover
Fig.3 Gas production rates for different waste thicknesses
Fig.4 Numerical results of representative case 3-5
Fig.5 Variations of gas pressure under geomembrane with horizontal distance of model on day 100 for different analysis conditions
Fig.6 Drawing method to determine arrangement spacing of gas collection pipes (extraction pressure of gas collection pipes is −1.5 kPa)
Fig.7 Estimation method of gas collection pipe spacing
类型 K/m2 L/m
p = 0 kPa p = ?1 kPa p = ?2 kPa p = ?3 kPa p = ?4 kPa p = ?5 kPa
碎石、粗砂 10?11~10?10 0.3~3.0 0.8~8.0 2~22 6~60 17~170 45~450
中砂 10?12~10?11 0.03~0.3 0.08~0.8 0.2~2 0.6~6 1.7~17 4.5~45
细砂、粉砂 10?13~10?12 0.003~0.03 0.008~0.08 0.02~0.2 0.06~0.6 0.17~1.7 0.45~4.5
Tab.2 Arrangement spacing of gas collection pipes for different types of coarse-grained soil
Fig.8 Layout of multi-level gas collection and transmission pipeline network of Xiaping Landfill in Shenzhen
Fig.9 Development of landfill gas generation and collection rates with time at Xiaping landfill in Shenzhen
[1]   中国统计年鉴[EB/OL]. [2023-04-11]. https://navi.cnki.net/knavi/yearbooks/YINFN/issues/0OYqzdRULgj25p8jQqvux1mJ_9qyFvowHona-cVOzTFlv4Gz7hTNE2_H-5BsNZt7wvI-MEwmhqk=?uniplatform=NZKPT&language=chs.
[2]   GAO W, CHEN Y, ZHAN L, et al Engineering properties for high kitchen waste content municipal solid waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7 (6): 646- 658
[3]   李鹤. 高厨余垃圾填埋场降解固结性状及液气诱发灾害治理方法 [D]. 杭州: 浙江大学, 2022.
LI He. Degradation and consolidation characteristics of high kitchen waste landfill and treatment methods of liquid gas induced disasters [D]. Hangzhou: Zhejiang University, 2002.
[4]   陈云敏 环境土工基本理论及工程应用[J]. 岩土工程学报, 2014, 36 (1): 1- 46
CHEN Yunmin Basic theory and engineering application of environmental geotechnical engineering[J]. Journal of Geotechnical Engineering, 2014, 36 (1): 1- 46
doi: 10.11779/CJGE201401001
[5]   张俊文 液气阻滞作用下填埋场局部滑移案例分析[J]. 中国资源综合利用, 2022, 40 (7): 124- 127
ZHANG Junwen Local slip case analysis of landfill under liquid-gas retardation[J]. China Resources Comprehensive Utilization, 2022, 40 (7): 124- 127
doi: 10.3969/j.issn.1008-9500.2022.07.039
[6]   WANG X, NAGPURE A S, DECAROLIS J F, et al. Using observed data to improve estimated methane collection from select U. S. landfills [J/OL]. Environmental Science and Technology, 2013, 47(7): 3251-3257[2023-04-01]. https://pubs.acs.org/doi/epdf/10.1021/es304565m.
[7]   CHEN Y M, ZHAN L T, XU X B, et al. Moisture and gas flow properties of compacted loess final covers for MSW landfills in Northwest [C]// Proceeding of 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s. n.], 2013: 3009-3012.
[8]   沈斯亮. 生活垃圾填埋场填埋气测试方法与逸出规律[D]. 杭州: 浙江大学, 2020: 21.
SHEN Siliang. Test method and escape law of landfill gas in domestic waste landfill [D]. Hangzhou: Zhejiang University, 2020: 21.
[9]   刘彦君, 杨惠媛, 刘宏, 等 生活垃圾填埋场覆盖膜破损及其环境影响[J]. 中国环境监测, 2022, 38 (3): 170- 174
LIU Yanjun, YANG Huiyuan, LIU Hong, et al Damage of landfill cover film and its environmental impact[J]. China Environmental Monitoring, 2022, 38 (3): 170- 174
[10]   生活垃圾卫生填埋技术规范: CJJ 17-2004 [EB/OL]. [2023-04-11]. https://kns.cnki.net/kcms2/article/abstract?v=kxaUMs6x7-6q_AXxJfcZexIw_qLsfQZE-6kuhgfplYGhnsGOgQg-lQASeg93saLv0UQPQuMcn74O_O9H0I63h8G8T-aCnS-z&uniplatform=NZKPT.
[11]   ZHAN L T, XU H, CHEN Y M, et al Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: preliminary findings from a large-scale experiment[J]. Waste Management, 2017, 63: 27- 40
doi: 10.1016/j.wasman.2017.03.008
[12]   CHEN Y M, ZHAN L T, XU X B, et al. Geo-environmental problems in landfills of MSW with high organic content semantic scholar [C]// Proceeding of 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris: [s. n. ], 2013: 3009-3012.
[13]   兰吉武. 填埋场渗滤液产生、运移及水位雍高机理和控制[D]. 杭州: 浙江大学, 2012.
LAN Jiwu. Mechanism and control of leachate generation, migration and water level rise in landfill [D]. Hangzhou: Zhejiang University, 2012.
[14]   叶剑. 填埋场渗沥液产量计算与水平导排盲沟渗流分析[D]. 杭州: 浙江大学, 2015.
YE Jian. Leachate yield calculation and seepage analysis of horizontal drainage blind ditch [D]. Hangzhou: Zhejiang University, 2015.
[15]   徐辉. 高厨余垃圾生化—水力—力学相互作用大型模型试验及应用[D]. 杭州: 浙江大学, 2016.
XU Hui. Large-scale model test and application of biochemical-hydraulic-mechanical interaction of high kitchen waste [D]. Hangzhou: Zhejiang University, 2016.
[16]   生活垃圾卫生填埋场岩土工程技术规范 [S]. 北京: 住房和城乡建设部, 2012.
[17]   XU X B, ZHAN T L T, CHEN Y M, et al Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qi Zishan landfill, China[J]. Canadian Geotechnical Journal, 2014, 51 (11): 1243- 1252
doi: 10.1139/cgj-2013-0306
[18]   黎青松, 郭祥信, 徐文龙, 等 深圳市玉龙坑垃圾填埋气体成分与产气规律研究[J]. 环境卫生工程, 1999, 7 (1): 6- 9
LI Qingsong, GUO Xiangxin, XU Wenlong, et al Study on gas composition and gas production law of Yulongkeng landfill in Shenzhen[J]. Environmental Health Engineering, 1999, 7 (1): 6- 9
[19]   罗钰翔, 王伟, 高兴保 生活垃圾填埋气体产量的现场测试及IPCC推荐模型的校验[J]. 环境科学, 2009, 30 (11): 3427- 3431
LUO Yuxiang, WANG Wei, GAO Xingbao Field test of landfill gas production and validation of IPCC recommended model[J]. Environmental Science, 2009, 30 (11): 3427- 3431
doi: 10.3321/j.issn:0250-3301.2009.11.050
[20]   马小飞. 垃圾填埋场抽气试验及填埋气收集量评估方法[D]. 杭州: 浙江大学, 2013.
MA Xiaofei. Landfill pumping test and landfill gas collection evaluation method [D]. Hangzhou: Zhejiang University, 2013.
[21]   高武, 詹良通, 兰吉武, 等 高渗滤液水位填埋场的填埋气高效收集探究[J]. 中国环境科学, 2017, 37 (4): 1434- 1441
GAO Wu, ZHAN Liangtong, LAN Jiwu, et al Efficient collection of landfill gas from landfills with high leachate levels[J]. China Environmental Science, 2017, 37 (4): 1434- 1441
[22]   李广信, 张丙印, 于玉贞. 土力学(第2版)[M]. 北京: 清华大学出版社, 2013.
[1] Ze-kai MIAO,Da-ren ZHANG,Gang MA,Yu-xiong ZOU,Yuan CHEN,Wei ZHOU,Yu-xuan XIAO. Microscopic dynamics of sand particles based on X-ray computed tomography and in-situ triaxial compression[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1597-1606.
[2] Jun-jian ZHAO,Teng LIANG,Liang-tong ZHAN,Kwan LEUNG ANTHONY,Yan-bo CHEN,Yu ZHAO,Yun-min CHEN. Development and performance study of water uptake-able model root based on osmotic technique[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1382-1392.
[3] Ke WANG,Jun-tao WU,Zhe YU,Chi-xuan XIANG,Kui-hua WANG. Optimization of ultrasonic tomography technology for concrete pile foundation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 805-813.
[4] Zhen WANG,Zhi DING,Xiao ZHANG,Qi-hui ZHOU,Cheng-quan ZHANG. Ultimate bearing capacity of shield segment structures considering ovality imperfection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2290-2302.
[5] Hong-yang LIU,Qiang LUO,Wei-long WANG,Pin-feng LI,Hong-fei MA,Dong-qing ZHANG. Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1504-1513.
[6] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[7] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.
[8] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[9] Chun-xin ZHANG,Hong-hu ZHU,Hao-jie LI,Wei ZHANG,Chun LIU. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1317-1326.
[10] Hong-wei YING,Di WANG,Ding-ye XU,Li-sha ZHANG. Analysis on exit gradient of aquitard at bottom of foundation pit under dynamic confined water considering nonlinearity of soil[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2356-2363.
[11] Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.
[12] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[13] Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.
[14] Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.
[15] Yao CHEN,Yuan-qiang CAI,Zhi-gang CAO,Hai-jiang WANG. Influences of pavement irregularity on ground vibrations generated by moving traffic load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1031-1039.