To explore the deformation and failure mechanism of sand foundation induced by the decrease of tunnel support pressure, the material point method (MPM), a large deformation analyzing method in geotechnical engineering was used to simulate the whole process. The characteristics of localized shear bands, the arching effect, the settlement trough shape, and the relationship between support pressure and ground movement were investigated. The reliability of MPM in analyzing tunnel-induced soil deformation was verified. By comparing the simulated results with experimental and theoretical data, it is shown that MPM can accurately predict the ground deformation caused by the reduction of tunnel support pressure and the ultimate support pressure, and obtain the overall deformation behavior before and after tunnel collapse. On this basis, the influence of cover depth-to-diameter ratios and friction angles on the arching effect, the limiting support pressure and the strata deformation were investigated.
Chun-xin ZHANG,Hong-hu ZHU,Hao-jie LI,Wei ZHANG,Chun LIU. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1317-1326.
Fig.1Model size and discretization of material points
Fig.2Support pressure versus ground settlement curves
Fig.3Displacement contours of soil under different support pressures (C/D=1.5, φ=25°)
Fig.4Deviatoric strain contours of soil under different support pressures (C/D=1.5, φ=25°)
Fig.5Volumetric strain contour of soil at σT=51 kPa (C/D=1.5, φ=25°)
Fig.6Stress evolution of two material points in shear bands
Fig.7Stress distributions in cover soil
Fig.8Fitted curves of ground surface settlement (C/D=1.6,φ=25°)
Fig.9Relationship between pressure reduction factor and ground settlement for different cover depths
C/D
σTL/kPa
λ
1.5
51
0.73
2.5
63
0.78
3.5
64
0.84
Tab.1Ultimate support pressures for different cover depths
Fig.10Deviatoric strain contours of soil at different pressure reduction factors
Fig.11Relationship between pressure reduction factor and ground settlement with different friction angles
φ/(°)
σTL/kPa
λ
15
129
0.55
25
66
0.77
35
43
0.85
Tab.2Ultimate support pressures for soils with different friction angles
Fig.12Relationship between depth and vertical stress
Fig.13Deviatoric strain contours of soil with different friction angles at λ=0.95
[1]
施成华, 彭立敏, 刘宝琛 浅埋隧道开挖对地表建筑物的影响[J]. 岩石力学与工程学报, 2004, 23 (19): 3310- 3316 SHI Cheng-hua, PENG Li-min, LIU Bao-chen Influence of shallow tunnel excavation on ground surface buildings[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (19): 3310- 3316
doi: 10.3321/j.issn:1000-6915.2004.19.017
[2]
丁智, 张霄, 周联英, 等 近距离桥桩与地铁隧道相互影响研究及展望[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1943- 1953 DING Zhi, ZHANG Xiao, ZHOU Lian-ying, et al Research and prospect of interaction between close bridge pile and metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1943- 1953
doi: 10.3785/j.issn.1008-973X.2018.10.014
[3]
VORSTER T E, KLAR A, SOGA K, et al Estimating the effects of tunneling on existing pipelines[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (11): 1399- 1410
doi: 10.1061/(ASCE)1090-0241(2005)131:11(1399)
[4]
ALIABADIAN Z, SHARAFISAFA M, NAZEMI M, et al Numerical analyses of tunnel collapse and slope stability assessment under different filling material loadings: a case study[J]. Arabian Journal of Geosciences, 2015, 8 (3): 1229- 1242
doi: 10.1007/s12517-014-1286-1
[5]
HENCHER S R The Glendoe tunnel collapse in Scotland[J]. Rock Mechanics and Rock Engineering, 2019, 52: 4033- 4055
doi: 10.1007/s00603-019-01812-w
[6]
MAIR R J, TAYLOR R N. Theme lecture: bored tunnelling in the urban environment[C]// 14th International Conference on Soil Mechanics and Foundation Engineering. Hamburg: ISSMGE, 1997, 4: 2353-2385.
[7]
陈仁朋, 李君, 陈云敏, 等 干砂盾构开挖面稳定性模型试验研究[J]. 岩土工程学报, 2011, 33 (1): 117- 122 CHEN Ren-peng, LI Jun, CHEN Yun-min, et al Large-scale tests on face stability of shield tunnelling in dry cohesionless soil[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (1): 117- 122
[8]
米博, 项彦勇 砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究[J]. 岩土力学, 2020, 41 (3): 837- 848 MI Bo, XIANG Yan-yong Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground[J]. Rock and Soil Mechanics, 2020, 41 (3): 837- 848
[9]
朱伟, 秦建设, 卢廷浩 砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27 (8): 897- 902 ZHU Wei, QIN Jian-she, LU Ting-hao Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27 (8): 897- 902
doi: 10.3321/j.issn:1000-4548.2005.08.009
[10]
秦建设, 虞兴福, 钟小春, 等 黏土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土力学, 2007, 28 (Suppl. 1): 511- 515 QIN Jian-she, YU Xing-fu, ZHONG Xiao-chun, et al Numerical research on face movement and collapse of shield tunneling in silt grounds[J]. Rock and Soil Mechanics, 2007, 28 (Suppl. 1): 511- 515
[11]
MARSHALL A M, FARRELL R, KLAR A, et al Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Geotechnique, 2012, 62 (5): 385- 399
doi: 10.1680/geot.10.P.047
[12]
MARSHALL A M, ELKAYAM I, KLAR A. Ground behaviour above tunnels in sand-DEM simulations versus centrifuge test results[C]// 2009 2nd International Conference on Computational Methods in Tunnelling. Bochum: [s. n.], 2009: 183-190.
[13]
SONG G, FRANZA A, ELKAYAM I, et al. A study of greenfield tunnelling in sands using FEM, DEM, and centrifuge modelling[C]// Micro to Macro Mathematical Modelling in Soil Mechanics. Reggio Calabria: [s. n.], 2018: 337-345.
[14]
周小文, 濮家骝 砂土中隧洞开挖引起的地面沉降试验研究[J]. 岩土力学, 2002, 23 (5): 559- 563 ZHOU Xiao-wen, PU Jia-liu Centrifuge model test on ground settlement induced by tunneling in sandy soil[J]. Rock and Soil Mechanics, 2002, 23 (5): 559- 563
doi: 10.3969/j.issn.1000-7598.2002.05.007
[15]
WONGSAROJ J, SOGA K, MAIR R J Tunnelling-induced consolidation settlements in London Clay[J]. Géotechnique, 2013, 63 (13): 1103- 1115
doi: 10.1680/geot.12.P.126
[16]
BYM T, MARKETOS G, BURLAND J B, et al Use of a two-dimensional discrete-element line-sink model to gain insight into tunnelling-induced deformations[J]. Géotechnique, 2013, 63 (9): 791- 795
doi: 10.1680/geot.12.T.003
[17]
SULSKY D, CHEN Z, SCHREYER H L A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118 (1-2): 179- 196
doi: 10.1016/0045-7825(94)90112-0
[18]
SULSKY D, ZHOU S J, SCHREYER H L Application of a particle-in-cell method to solid mechanics[J]. Computer Physics Communications, 1995, 87 (1-2): 236- 252
doi: 10.1016/0010-4655(94)00170-7
[19]
FERN J, ROHE A, SOGA K, et al. The material point method for geotechnical engineering: a practical guide[M]. Boca Raton: CRC Press, 2019.
[20]
史卜涛, 张云, 张巍 边坡稳定性分析的物质点强度折减法[J]. 岩土工程学报, 2015, 38 (9): 1678- 1648 SHI Bo-tao, ZHANG Yun, ZHANG Wei Strength reduction material point method for slope stability[J]. Chinese Journal of Geotechnical Engineering, 2015, 38 (9): 1678- 1648
doi: 10.11779/CJGE201509016
[21]
王斌, 冯夏庭, 潘鹏志, 等 物质点法在边坡稳定性评价中的应用研究[J]. 岩石力学与工程学报, 2017, 36 (9): 2146- 2155 WANG Bin, FENG Xia-ting, PAN Peng-zhi, et al Slope failure analysis using the material point method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2146- 2155
[22]
王双, 李小春, 石露, 等 物质点强度折减法及其在边坡中的应用[J]. 岩土力学, 2016, 37 (9): 2672- 2678 WANG Shuang, LI Xiao-chun, SHI Lu, et al Material point strength reduction method and its application to slope engineering[J]. Rock and Soil Mechanics, 2016, 37 (9): 2672- 2678
[23]
张芮瑜, 孙玉进, 宋二祥 强夯的物质点法模拟及其能量转化规律分析[J]. 岩土工程学报, 2019, 41 (7): 1206- 1216 ZHANG Rui-yu, SUN Yu-jin, SONG Er-xiang Simulation of dynamic compaction using material point method and analysis of its energy conversion law[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (7): 1206- 1216
[24]
PHUONG N T V, VAN TOL A F, ELKADI A S K, et al Numerical investigation of pile installation effects in sand using material point method[J]. Computers and Geotechnics, 2016, 73: 58- 71
doi: 10.1016/j.compgeo.2015.11.012
[25]
FERN J Modelling tunnel-induced deformations with the material point method[J]. Computers and Geotechnics, 2019, 111: 202- 208
doi: 10.1016/j.compgeo.2019.03.017
[26]
FERN J, DE LANGE D, ZWANENBURG C, et al Experimental and numerical investigations of dyke failures involving soft materials[J]. Engineering Geology, 2017, 219: 130- 139
doi: 10.1016/j.enggeo.2016.07.006
[27]
BEUTH L, WIECKOWSKI Z, VERMEER P A Solution of quasi-static large-strain problems by the material point method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35 (13): 1451- 1465
[28]
汪大海, 贺少辉, 刘夏冰, 等 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38 (6): 1284- 1296 WANG Da-hai, HE Shao-hui, LIU Xia-bing, et al A modified method for determining the overburden pressure above shallow tunnels considering the distribution of the principal stress rotation and the partially mobilized arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (6): 1284- 1296
[29]
PECK R B. Deep Excavations and tunneling in soft ground[C]// 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico: ISSMGE, 1969: 225–290.