Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (10): 1946-1954    DOI: 10.3785/j.issn.1008-973X.2019.10.012
Civil Engineering     
Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles
Wei-ping CAO1,2(),Bing XIA1,3(),Xin GE1,4
1. School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Key Laboratory of Geotechnical and Underground Space Engineering, Shaanxi Province, Xi’an University of Architecture and Technology, Xi’an 710055, China
3. School of Architectural Engineering, Sichuan University of Arts and Science, Dazhou 635000, China
4. 3st Engineering Limited Company, China Railway No.2 Engineering Group Limited Company, Chengdu 610031, China
Download: HTML     PDF(1593KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Relation curves of lateral resistance force per unit length to pile deflection were measured for single battered piles based on model tests under horizontally loads in medium-dense dry sand. The relations of the profile of limiting lateral resistance force per unit length (LFP) and initial subgrade reaction coefficient to batter angle of inclined piles and plumb piles were analyzed. A hyperbolic expression was used to establish a p-y curve approach for battered pile subject to lateral loads. The results were calculated by using the hyperbolic p-y curves established herein and that reported in literatures. The calculation results accorded well with the experimental results, which verified the rationality of the above method. The approach was used to analyze the behaviors of laterally loaded batter piles. 1) The pile-top lateral displacement, the maximum bending moment and the maximum shearing force in a fixed-head batter pile are less than that of a free-head batter pile with which induced the same load. 2) The vertical downwards load on the pile top can increase the pile-top lateral displacement, the maximum bending moment and the maximum shearing force for both the positively battered piles and the plumbed piles. The pile-top lateral displacement, the maximum bending moment and the maximum shearing force will firstly decrease to zero and then increase reversely with the increase of vertical downwards load in the case of negatively battered piles. The pile-top lateral displacement, the maximum bending moment and the maximum shearing force of the plumbed pile, under a same lateral load, will decrease with the increase of the vertical uplifting load, while that of the positively battered pile decreases to zero and then increases reversely with the increases of the vertical uplifting load, and that of the negatively battered pile increases with the increase of the vertical uplifting load.



Key wordsbattered pile      horizontal load      sand      pile-soil interaction     
Received: 24 August 2018      Published: 30 September 2019
CLC:  TU 43  
Fund:  Supported by the Natural Science Foundation of Shaanxi Province (2019JM-006)
Cite this article:

Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.10.012     OR     http://www.zjujournals.com/eng/Y2019/V53/I10/1946


水平受荷斜桩双曲线型p-y曲线的构建及其应用

基于模型试验获得中密干砂中水平受荷斜桩的桩侧土反力p与桩身位移y的关系曲线,探讨斜桩和直桩的桩侧极限土反力、初始地基反力模量与桩身倾角的关系,构建砂土地基斜桩的双曲线型p-y曲线. 应用建立的双曲线型p-y曲线对文献[16,20]的模型试验进行计算,计算结果与实测结果具有较好的一致性,验证了建立的双曲线型p-y曲线的合理性. 运用建立的p-y曲线,分析影响水平受荷斜桩性状的因素,结果如下. 1)与桩顶自由条件相比,斜桩桩顶固支可以有效地减小桩顶横向位移、桩身最大弯矩及最大剪力. 2)在竖向下压荷载作用下,正斜桩和直桩的桩顶横向位移、桩身最大弯矩及最大剪力随着竖向下压荷载的增加而增大,负斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着竖向下压荷载的增加先减小至0,再反向增大. 在竖向上拔荷载作用下,直桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加而减小,正斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加先减小至0,再反向增大,负斜桩的桩顶横向位移、桩身最大弯矩及最大剪力随着上拔荷载的增加而增大.


关键词: 斜桩,  水平荷载,  砂土,  桩土相互作用 
Fig.1 Schematic view of batter piles
Fig.2 p-y curves for plumb and batter piles at two times pile diameter depth
Fig.3 Distribution of subgrade modulus and ultimate soil resistance along depth
文献 松砂 中密砂 密砂
文献[9] 1 100~5 425 5 425~16 300 16 300~34 000
文献[6] 1 270~9 910 9 910~52 780 52 780~74 450
本文试验 ? 73 800 ?
Tab.1 Ratio between horizontal subgrade modulus and depth in dry sand
Fig.4 Relation of ψ-α at 2D depth
Fig.5 Soil resistance for inclined wall at width of B
Fig.6 Relation between pub/(cos δ·KpbγD)and z/D
Fig.7 Relation of $\lambda $ and $D$
Fig.8 Relation between pub/pu and inclination of pile
Fig.9 Schematic of force on battered pile
Gs Dr/% ρd, max/(kg·m?3 φ'/(°) c'/kPa wL/% wP/%
2.69 61 1.570 30.0 1.0 32 23
Tab.2 Soil conditions of tests
桩型 L/m L0/m L1/m D/mm t/mm EI/(kN·m2 ηhbηh/(MN·m?3 pubz?1puz?1(kN·m?2
正斜桩(1∶5) 6 3.410 2.156 114 4.5 464.8 16.345 24.091
直桩 6 3.410 2.390 114 4.5 464.8 8.558 15.149
负斜桩(?1∶5) 6 3.410 2.214 114 4.5 464.8 12.456 18.629
Tab.3 Parameters of model piles and p-y curves
Fig.10 Comparison between calculated results and test results of literature [16]
Gs ρd,max/(g·cm?3 ρd,min/(g·cm?3 ρ/(g·cm?3 φ'/(°) c'/kPa
2.679 1.64 1.32 1.62 42.6 0
Tab.4 Soil conditions of tests
桩型 L/m L1/mm D/mm t/mm EI/(kN·m2 ηhbηh/(MN·m?3 pubz?1puz?1/(kN·m?2
正斜桩(1∶6) 2.472 206 50.8 16.5 15.408 29.180 42.085
正斜桩(1∶12) 2.446 206 50.8 16.5 15.408 26.173 34.736
直桩 2.438 206 50.8 16.5 15.408 23.122 29.425
负斜桩(?1∶12) 2.446 206 50.8 16.5 15.408 20.070 25.540
负斜桩(?1∶6) 2.472 206 50.8 16.5 15.408 17.063 22.675
Tab.5 Parameters of model piles and p-y curves
Fig.11 Comparison between calculated results and test results of literature [20]
Fig.12 Profile of soil
Fig.13 Pile top displacements,maximum moments and maximum shear forces at pile section
Fig.14 Influence of pile top vertical load on pile inner force
[1]   ZHANG L M, MCVAY M C, LAI P W Centrifuge modeling of laterally loaded single battered piles in sand[J]. Canadian Geotechnical Journal, 1999, 36 (6): 1074- 1084
doi: 10.1139/t99-072
[2]   ABU-FARSAKH M Y, YU X, PATHAK B, et al Field testing and analyses of a batter pile group foundation under lateral loading[J]. Transportation Research Record Journal of the Transportation Research Board, 2011, 2212: 42- 55
doi: 10.3141/2212-05
[3]   SALISBURY N G, DAVIDOW S A. Current design and construction practices for micropile supported foundations of electrical transmission structures in North America [C]// Proceedings of the 12th International Workshop on Micropiles Conference.Kraków: Poland, 2014.
[4]   徐江, 龚维明, 张琪, 等 大口径钢管斜桩竖向承载特性数值模拟与现场试验研究[J]. 岩土力学, 2017, 38 (8): 2434- 2440
XU Jiang, GONG Wei-ming, ZHANG Qi, et al Numerical simulation and field test study on vertical bearing behavior of large diameter steel of inclined piles[J]. Rock and Soil Mechanics, 2017, 38 (8): 2434- 2440
[5]   横山幸满. 桩结构物的计算方法和计算实例[M]. 唐业清, 译. 北京: 中国铁道出版社, 1984.
[6]   API. Planning, designing, and constructing fixed offshore platforms: working stress design [M]. Washington, D. C: API, 2014.
[7]   Offshore standard. Design of offshore wind turbine structure: DNV-OS-J101 [S]. Hovik, Norway: Det Norske Veritas, 2014.
[8]   中华人民共和国行业标准编写组. 港口工程桩基规范: JTS 167-4-2012 [S]. 北京: 人民交通出版社, 2012.
[9]   REESE L C, COX W R, KOOP F D. Analysis of laterally loaded Piles in sand [C] // Proceedings of the 6th Annual Offshore Technology Conference. Houston: Texas, 1974: 473-483.
[10]   REESE L C Discussion on soil modulus for laterally loaded piles[J]. Transactions, ASCE, 1958, 123: 1071- 1074
[11]   GEORGIADIS M, ANAGNOSTOPOULOS C, SAFLEKOU S Centrifugal testing of laterally loaded piles in sand[J]. Canadian Geotechnical Journal, 1992, 29 (2): 208- 216
doi: 10.1139/t92-024
[12]   朱斌, 朱瑞燕, 罗军, 等 海洋高桩基础水平大变位性状模型试验研究[J]. 岩土工程学报, 2010, 32 (4): 521- 530
ZHU Bin, ZHU Rui-yan, LUO Jun, et al Model tests on characteristics of ocean and offshore elevated piles with large lateral deflection[J]. Chinese Journal of Geotechnical Engineering, 2010, 32 (4): 521- 530
[13]   朱斌, 杨永垚, 余振刚, 等 海洋高桩基础水平单调及循环加载现场试验[J]. 岩土工程学报, 2012, 34 (6): 1028- 1037
ZHU Bin, YANG Yong-yao, YU Zhen-gang, et al Field tests on lateral monotonic and cyclic loadings of offshore elevated piles[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (6): 1028- 1037
[14]   ZHU B, LI T, XIONG G, et al Centrifuge model tests on laterally loaded piles in sand[J]. International Journal of Physical Modeling in Geotechnics, 2016, 16 (4): 1- 13
[15]   袁廉华, 陈仁朋, 孔令刚, 等 轴向荷载对斜桩水平承载特性影响试验及理论研究[J]. 岩土力学, 2013, 34 (7): 1958- 1964
YUAN Lian-hua, CHEN Ren-peng, KONG Ling-gang, et al Test and theoretical research on influence of axial load on lateral bearing capacity of batter piles[J]. Rock and Soil Mechanics, 2013, 34 (7): 1958- 1964
[16]   凌道盛, 任涛, 王云岗 砂土地基斜桩水平承载特性p-y曲线法 [J]. 岩土力学, 2013, 34 (1): 155- 162
LING Dao-sheng, REN Tao, WANG Yun-gang A p-y curves method for horizontal bearing characteristics of single batter pile in sands [J]. Rock and Soil Mechanics, 2013, 34 (1): 155- 162
[17]   曹卫平, 夏冰, 赵敏, 等 砂土中水平受荷斜桩的p-y 曲线及其应用 [J]. 岩石力学与工程学报, 2018, 37 (3): 743- 753
CAO Wei-ping, XIA Bing, ZHAO Min, et al P-y curves of laterally loaded single battered piles in sand and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (3): 743- 753
[18]   TERZAGHI K Evaluation of coefficient of subgrade reaction[J]. Geotechnique, 1955, 5 (4): 297- 326
doi: 10.1680/geot.1955.5.4.297
[19]   Canadian Geotechnical Society. Canadian foundation engineering manual [M]. Ottawa: Canadian Geotechnical Society Production Department, 2006.
[20]   AWOSHIKA K. Analysis of foundation with widely spaced batter piles [D]. Austin, Texas: University of Texas, 1971.
[21]   龚维明, 黄挺, 戴国亮 海上风电机高桩基础关键参数试验研究[J]. 岩土力学, 2011, (增 2): 115- 121
GONG Wei-ming, HUANG ting, DAI Guo-liang Experimental study of key parameters of high piled foundation for offshore wind turbine[J]. Rock and Soil Mechanics, 2011, (增 2): 115- 121
[22]   孙永鑫. 近海风机超大直径单桩水平承载特性试验与数值分析[D]. 杭州: 浙江大学, 2016.
SUN Yong-xin. Experimental and numerical studies on a laterally loaded monopile foundation of offshore wind turbine [D]. Hangzhou: Zhejiang University, 2016.
[1] Pei GE,Wei HUANG,Meng LI. Experimental study on recycled brick aggregate concrete frame model[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 10-19.
[2] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[3] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[4] Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.
[5] Shao-heng HE,Tang-dai XIA,Bing-qi YU,Zhi DING,Min GAO,Hua-feng SHAN. Effect of temperature on volume strain and consolidation characteristics of calcareous sand[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(2): 221-232.
[6] GONG Shun-feng, WANG Xi-peng, LI Gen, LIU Cheng-bin. Influencing mechanisms of inter-layer adhesion behavior on buckle propagation of sandwich pipes[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(5): 819-827.
[7] WEN Xiao-dong, CAI Yu-liang, ZHAO Li, FENG Lei. Sulfate resistance of concrete by machine-made tuff sand at low temperature[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 532-537.
[8] HUANG Li, DENG Hua. Hoff theory based sandwich shell element for metal composite roof panel[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(1): 41-47.
[9] LEI Ming wei, GONG Shun feng, Hu Qing. Buckling and collapse analysis for composite structures of deepwater sandwich pipes under pure bending[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(12): 2376-2386.
[10] ZHENG Jun,TANG Ren-zhong. Carbon efficiency model and evaluation method for sand casting[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(1): 102-109.
[11] GONG Shun-feng, HU Qing. Buckling and collapse analyses of composite structures for deepwater sandwich pipes under external pressure[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1624-1631.
[12] WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(4): 595-601.
[13] DENG Hua, HUANG Li, WANG Chen. Analysis on wind-induced dynamic behaviors of polyurethane sandwich roof panels[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2125-2131.
[14] LIANG Meng-gen, LIANG Tian, CHEN Yun-min. Centrifuge shaking table modeling of liquefaction characteristics of free field[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1805-1814.
[15] LIU Ying-yi, LU Lin, ZHENG Miao-zi, HUANG Jun,TENG Bin. Analysis of seabed stability and local scour around
submarine pipelines under waves and current
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1135-1142.