Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1382-1392    DOI: 10.3785/j.issn.1008-973X.2023.07.013
    
Development and performance study of water uptake-able model root based on osmotic technique
Jun-jian ZHAO1,2(),Teng LIANG1,*(),Liang-tong ZHAN1,2,Kwan LEUNG ANTHONY3,Yan-bo CHEN1,Yu ZHAO1,2,Yun-min CHEN1,2
1. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
3. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China
Download: HTML     PDF(2410KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new 3-D printed water uptake-able model root based on osmotic technique was designed and manufactured in order to simulate the effects of water uptake by real plant roots and its influence on hydrological and mechanical properties of the surrounding soil. The model root was designed with a perforated hollow structure and wrapped with a semi-permeable membrane. Water was absorbed from soil by the osmotic pressure gradient between PEG solution and soil water when filled with polyethylene glycol (PEG) solution inside. Results of 1-g water uptake tests in silty clay with sand showed that circulating PEG solution with a concentration equivalent to an osmotic pressure of 1500 kPa produced a maximum soil matric suction of approximately 120 kPa near the model root, overcoming the suction inducing limit of existing water uptake-able model root using vacuum technique. The model root could possess varied water uptake potential, hence simulate different evaporation scenarios through adjusting the molality of solute PEG within proper range and controlling solution circulating properties.



Key wordssoil bioengineering      soil matric suction      model root      osmotic technique      3D-printing technique     
Received: 19 July 2022      Published: 17 July 2023
CLC:  TU 43  
Fund:  国家自然科学基金资助项目(41961144018, 52008368, 51988101, 51922112);香港研究资助局项目(C6006-20G)
Corresponding Authors: Teng LIANG     E-mail: zhaojunjian@zju.edu.cn;tliang@zju.edu.cn
Cite this article:

Jun-jian ZHAO,Teng LIANG,Liang-tong ZHAN,Kwan LEUNG ANTHONY,Yan-bo CHEN,Yu ZHAO,Yun-min CHEN. Development and performance study of water uptake-able model root based on osmotic technique. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1382-1392.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.013     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1382


基于渗透原理的可吸水模型根系研发与性能研究

为了模拟自然植物根系的吸水过程,探究其对周边土体水文力学特征的影响机制,利用3D打印技术,设计并制造基于正渗透原理的新型可吸水模型根系. 模型根系采用中空结构,侧壁开孔,外覆半透膜. 当内部灌注聚乙二醇(PEG)溶液时,PEG溶液和土中水分间存在的渗透压梯度驱使了模型根系吸水. 常重力模型根系吸水试验结果表明,在含砂粉质黏土中,循环浓度等效1500 kPa渗透压的PEG溶液可在根系附近土体中产生最大约120 kPa的基质吸力,该基质吸力超过了真空法模型根系的理论最大产生吸力. 通过在适当范围内调整PEG溶液的质量摩尔浓度,并控制溶液循环特征,模型根系可以具备不同的吸水能力,从而模拟不同的现实工况.


关键词: 生态岩土工程,  土体基质吸力,  模型根系,  渗透原理,  3D打印技术 
Fig.1 Calibration result of molality-Brix relationship for PEG 20 000 solution
Fig.2 Overview of newly-developed 3D-printed model root
Fig.3 Particle size distribution curve of test soil
项目 参数 实测值
基本土性参数 相对密度Gs 2.676
最大干密度ρdmax/(g·cm?3) 1.6
水的最优质量分数wopt/% 19.5
w2/% 16
w0.06/% 63
w0.002/% 21
D10/mm 0.001
D30/mm 0.004
D60/mm 0.01
塑限PL/% 26.42
液限LL/% 39.97
塑性指数PI/% 13.55
水文特性参数
(ρd =1.4 g/cm3)
饱和渗透系数ks/(m·s?1 3×10?8
进气值AEV/kPa 20
水的饱和体积分数φs/% 0.47(脱湿),0.41(吸湿)
水的残余体积分数φr/% 0.10(脱湿),0.10(吸湿)
α/kPa?1 0.035(脱湿),0.045(吸湿)
n 1.26(脱湿),1.24(吸湿)
m 0.21(脱湿),0.19(吸湿)
Tab.1 Summary of measured properties of test soil
Fig.4 Drying and wetting soil water retention curves of test soil compacted to dry density of 1.4 g/cm3
Fig.5 Comparisons of the mechanical properties of the 3D-printed model root with real woody, FDM-printed ABS plastic roots and other materials (after reference [20])
Fig.6 Diagram of 1-g model root water uptake test system
Fig.7 Schematic diagram of test setup for 1-g model root water uptake tests
试验ID p/kPa b/(mol·kg?1) 溶液循环
R-01 0
R-02 1500 0.01915
R-03 750 0.014 00
R-04 3000 0.02675
R-05 1500 0.01915
Tab.2 Summary of 1-g laboratory model test programs
Fig.8 Variations of measured soil matric suction with time for tests
Fig.9 Measured vertical distributions of soil matric suction before and after water uptake by model root
Fig.10 Measured horizontal distributions of soil matric suction before and after water uptake by model root
Fig.11 Relationship between matric suction and unsaturated hydraulic conductivity for test soil
Fig.12 Schematic diagram of concentration polarization phenomenon in model root
Fig.13 Comparison of maximum suction profiles obtained from model root and live plants
[1]   吴宏伟 大气–植被–土体相互作用: 理论与机理[J]. 岩土工程学报, 2017, 39 (1): 1- 47
CHARLES WANG-WAI Ng Atmosphere-plant-soil interactions: theories and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (1): 1- 47
[2]   孔纲强, 文磊, 刘汉龙, 等 植物根系分布形态及含根复合土强度特性试验[J]. 岩土力学, 2019, 40 (10): 3717- 3723
KONG Gang-qiang, WEN Lei, LIU Han-long, et al Strength properties of root compound soil and morphological observation of plant root[J]. Rock and Soil Mechanics, 2019, 40 (10): 3717- 3723
[3]   焦卫国, 詹良通, 季永新, 等 植被对土质覆盖层水分运移和存储影响试验研究[J]. 岩土工程学报, 2020, 42 (7): 1268- 1275
JIAO Wei-guo, ZHAN Liang-tong, JI Yong-xin, et al Experimental study on effects of vegetation on water transport and storage in soil cover[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (7): 1268- 1275
[4]   王一冰, 吴美苏, 周成 组合根系加固坡土的直剪试验及数值模拟[J]. 岩土工程学报, 2020, 42 (增1): 177- 182
WANG Yi-bing, WU Mei-su, ZHOU Cheng Direct shear tests and numerical simulation on slope soils reinforced by composite roots[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (增1): 177- 182
[5]   BORDOLOI S, NG C W W The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review[J]. Engineering Geology, 2020, 275: 105742
doi: 10.1016/j.enggeo.2020.105742
[6]   SMETHURST J A, BRIGGS K M, POWRIE W, et al Mechanical and hydrological impacts of tree removal on a clay fill railway embankment[J]. Géotechnique, 2015, 65 (11): 869- 882
[7]   BOLDRIN D, LEUNG A K, BENGOUGH A G Hydro-mechanical reinforcement of contrasting woody species: a full-scale investigation of a field slope[J]. Géotechnique, 2021, 71 (11): 970- 984
[8]   STOKES A, DOUGLAS G B, FOURCAUD T, et al Ecological mitigation of hillslope instability: ten key issues facing researchers and practitioners[J]. Plant and Soil, 2014, 377: 1- 23
[9]   TAYLOR R N. Geotechnical centrifuge technology [M]. London: Blackie Academic & Professional, 1995.
[10]   陈云敏 离心超重力实验: 探索多相介质演变的革命性手段[J]. 浙江大学学报: 工学版, 2020, 54 (4): 631- 632
CHEN Yun-min Centrifugal supergravity experiment: a revolutionary means to explore the evolution of multiphase media[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (4): 631- 632
[11]   SONNENBERG R, BRANSBY M F, HALLETT P D, et al Centrifuge modelling of soil slopes reinforced with vegetation[J]. Canadian Geotechnical Journal, 2010, 47 (12): 1415- 1430
doi: 10.1139/T10-037
[12]   LEUNG A K, KAMCHOOM V, NG C W W Influences of root-induced soil suction and root geometry on slope stability: a centrifuge study[J]. Canadian Geotechnical Journal, 2017, 54 (3): 291- 303
doi: 10.1139/cgj-2015-0263
[13]   刘琪. 植被根系对边坡稳定性影响的离心模型试验研究[D]. 成都: 西南交通大学, 2020.
LIU Qi. Centrifugal model test study on the influence of vegetation roots on slope stability [D]. Chengdu: Southwest Jiaotong University, 2020.
[14]   LAN H, WANG D, HE S, et al Experimental study on the effects of tree planting on slope stability[J]. Landslides, 2020, 17 (4): 1021- 1035
doi: 10.1007/s10346-020-01348-z
[15]   LIANG T, KNAPPETT J A, DUCKETT N Modelling the seismic performance of rooted slopes from individual root–soil interaction to global slope behaviour[J]. Géotechnique, 2015, 65 (12): 995- 1009
[16]   LIANG T, KNAPPETT J A Centrifuge modelling of the influence of slope height on the seismic performance of rooted slopes[J]. Géotechnique, 2017, 67 (10): 855- 869
[17]   LIANG T, BENGOUGH A G, KNAPPETT J A, et al Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge[J]. Ecological Engineering, 2017, 109: 207- 227
doi: 10.1016/j.ecoleng.2017.06.067
[18]   ASKARINEJAD A, SPRINGMAN S. Centrifuge modelling of the effects of vegetation on the response of a silty sand slope subjected to rainfall [C]// Computer Methods and Recent Advances in Geomechanics. Kyoto: CRC Press, 2014: 1339–1344.
[19]   SONNENBERG R, BRANSBY M F, BENGOUGH A G, et al Centrifuge modelling of soil slopes containing model plant roots[J]. Canadian Geotechnical Journal, 2012, 49 (1): 1- 17
doi: 10.1139/t11-081
[20]   LIANG T, KNAPPETT J A, BENGOUGH A G, et al Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides[J]. Landslides, 2017, 14 (5): 1747- 1765
doi: 10.1007/s10346-017-0802-2
[21]   ZHANG X, KNAPPETT J A, LEUNG A K, et al. Centrifuge modelling of root–soil interaction of laterally loaded trees under different loading conditions [EB/OL]. (2022-03-03). https://doi.org/10.1680/jgeot.21.00088.
[22]   BIDDLE G. Tree root damage to buildings [C]// Expansive Clay Soils and Vegetative Influence on Shallow Foundations. Houston: ASCE, 2001: 1–23.
[23]   BRIGGS K M, SMETHURST J A, POWRIE W, et al Managing the extent of tree removal from railway earthwork slopes[J]. Ecological Engineering, 2013, 61: 690- 696
doi: 10.1016/j.ecoleng.2012.12.076
[24]   NG C W W, YU R A novel technique to model water uptake by plants in geotechnical centrifuge[J]. Géotechnique Letters, 2014, 4 (4): 244- 249
[25]   NG C W W, LEUNG A K, KAMCHOOM V, et al A novel root system for simulating transpiration-Induced soil suction in centrifuge[J]. Geotechnical Testing Journal, 2014, 37 (5): 733- 747
doi: 10.1520/GTJ20130116
[26]   MCCUTCHEON J R, MCGINNIS R L, ELIMELECH M Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance[J]. Journal of Membrane Science, 2006, 278 (1/2): 114- 123
[27]   DELAGE P, CUI Y J An evaluation of the osmotic method of controlling suction[J]. Geomechanics and Geoengineering, 2008, 3 (1): 1- 11
doi: 10.1080/17486020701868379
[28]   TRIPATHY S, REES S W Suction of some polyethylene glycols commonly used for unsaturated soil testing[J]. Geotechnical Testing Journal, 2013, 36 (5): 768- 780
doi: 10.1520/GTJ20120041
[29]   HASSE H, KANY H P, TINTINGER R, et al Osmotic virial coefficients of aqueous poly(ethylene glycol) from laser-light scattering and isopiestic measurements[J]. Macromolecules, 1995, 28 (10): 3540- 3552
doi: 10.1021/ma00114a007
[30]   WILLIAMS J, SHAYKEWICH C F An evaluation of polyethylene glycol (PEG) 6000 and PEG 20, 000 in the osmotic control of soil water matric potential[J]. Canadian Journal of Soil Science, 1969, 49 (3): 397- 401
doi: 10.4141/cjss69-054
[31]   STOKES A, MATTHECK C Variation of wood strength in tree roots[J]. Journal of Experimental Botany, 1996, 47 (5): 693- 699
doi: 10.1093/jxb/47.5.693
[32]   VAN GENUCHTEN M T A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 (5): 892- 898
[33]   TAKE W A, BOLTON M D Tensiometer saturation and the reliable measurement of soil suction[J]. Géotechnique, 2003, 53 (2): 159- 172
[34]   BOLDRIN D, LEUNG A K, BENGOUGH A G. Hydrologic reinforcement induced by contrasting woody species during summer and winter [J]. Plant and Soil, 2018, 427(1/2): 369–390.
[35]   DAVID T S, HENRIQUES M O, KURZ-BESSON C, et al Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought[J]. Tree Physiology, 2007, 27 (6): 793- 803
doi: 10.1093/treephys/27.6.793
[36]   CHUN Y, MULCAHY D, ZOU L, et al A short review of membrane fouling in forward osmosis processes[J]. Membranes, 2017, 7 (2): 30
doi: 10.3390/membranes7020030
[37]   TARANTINO A, MONGIOVÌ L. Experimental investigations on the stress variables governing unsaturated soil behaviour at medium to high degrees of saturation [C]// Proceedings of Experimental Evidence and Theoretical Approaches in Unsaturated Soils. Trento: Taylor & Francis, 2000: 3-19.
[38]   TRIPATHY S, TADZA M Y M, THOMAS H R On the intrusion of polyethylene glycol during osmotic tests[J]. Géotechnique Letters, 2011, 1 (3): 47- 51
[39]   SCHAAP M G, LEIJ F J Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model[J]. Soil Science Society of America Journal, 2000, 64 (3): 843- 851
doi: 10.2136/sssaj2000.643843x
[40]   NG C W W, GARG A, LEUNG A K, et al Relationships between leaf and root area indices and soil suction induced during drying–wetting cycles[J]. Ecological Engineering, 2016, 91: 113- 118
doi: 10.1016/j.ecoleng.2016.02.005
[41]   ZHOU W H, HE S Y, GARG A, et al Field monitoring of suction in the vicinity of an urban tree: exploring termite infestation and the shading effects of tree canopy[J]. Acta Geotechnica, 2020, 15 (5): 1341- 1361
doi: 10.1007/s11440-019-00810-0
[42]   ISHAK M F, ZOLKEPLI M F, YUNUS M Y M, et al Verification of tree induced suction with numerical model[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2021, 121: 102980
doi: 10.1016/j.pce.2021.102980
[43]   POLLEN-BANKHEAD N, SIMON A Hydrologic and hydraulic effects of riparian root networks on streambank stability: is mechanical root-reinforcement the whole story?[J]. Geomorphology, 2010, 116 (3/4): 353- 362
[1] Ke WANG,Jun-tao WU,Zhe YU,Chi-xuan XIANG,Kui-hua WANG. Optimization of ultrasonic tomography technology for concrete pile foundation[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 805-813.
[2] Zhen WANG,Zhi DING,Xiao ZHANG,Qi-hui ZHOU,Cheng-quan ZHANG. Ultimate bearing capacity of shield segment structures considering ovality imperfection[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2290-2302.
[3] Hong-yang LIU,Qiang LUO,Wei-long WANG,Pin-feng LI,Hong-fei MA,Dong-qing ZHANG. Development of a test apparatus for staged construction of embankment in geotechnical centrifuge model tests[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(8): 1504-1513.
[4] Tao GONG,Kai-fu LIU,Xin-yu XIE,Chun-tai XU,Yang LOU,Ling-wei ZHENG. Shear characteristics of interface based on subloading-friction model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1328-1335, 1352.
[5] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Liang-wei JIANG,Liang ZHANG. Bi-LSTM based rolling forecast of subgrade post-construction settlement with unevenly spaced time series[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 683-691.
[6] Jia-qi JIANG,Ri-qing XU,Zhi-jian QIU,Xiao-bo ZHAN,Yue WANG,Guang-mou CHENG. Egg-shaped elasto-plastic constitutive modeling for over-consolidated clay[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1444-1452.
[7] Chun-xin ZHANG,Hong-hu ZHU,Hao-jie LI,Wei ZHANG,Chun LIU. Material point method simulations of sand deformation and failure around tunnel controlled by support pressure[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1317-1326.
[8] Hong-wei YING,Di WANG,Ding-ye XU,Li-sha ZHANG. Analysis on exit gradient of aquitard at bottom of foundation pit under dynamic confined water considering nonlinearity of soil[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2356-2363.
[9] Ya-feng LI,Ru-song NIE,Wu-ming LENG,Long-hu CHENG,Hui-hao MEI,Jun-li DONG. Deformation characteristics of fine-grained soil under cyclic dynamic loading with intermittence[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2109-2119.
[10] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[11] Qing-qing ZHENG,Tang-dai XIA,Meng-ya ZHANG,Fei ZHOU. Strain prediction model of undisturbed silty soft clay under intermittent cyclic loading[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 889-898.
[12] Wei-ping CAO,Bing XIA,Xin GE. Formation and application of hyperbolic p-y curves for horizontally loaded single batter piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1946-1954.
[13] Yao CHEN,Yuan-qiang CAI,Zhi-gang CAO,Hai-jiang WANG. Influences of pavement irregularity on ground vibrations generated by moving traffic load[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1031-1039.
[14] Ya-yuan HU,Chao WANG. Exploration of effective stress mechanics mechanism based on deformation work[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 925-931.
[15] Bo HUANG,Kai-long LIAO,Yu ZHAO,Jian-qun JIANG. Seismic fragility analysis of multi-storey frame structure considering effect of valley terrain[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 692-701.