Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (7): 1374-1381    DOI: 10.3785/j.issn.1008-973X.2023.07.012
    
Experimental study on frictional capacity of square pile-cemented soil interface
Jian-fei REN1,2(),Jia-jin ZHOU1,2,*(),Xiao-nan GONG1,2,Jian-lin YU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Engineering Research Center of Urban Underground Space Development of Zhejiang Province, Hangzhou 310058, China
Download: HTML     PDF(1508KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of three-dimensional pile-soil interface shear tests were conducted to analyze the frictional capacity of square pile-cemented soil interface. The effects of side length of square pile and curing time on frictional capacity of interface were mainly analyzed. The test results show that the maximum load of square pile-cemented soil interface increased first and then decreased with the increase of side length of square pile. The maximum load of square pile-cemented soil interface increased with curing time. The maximum skin friction of square pile-cemented soil interface decreased with the increase of side length of square pile. The increase of the side length of square pile (i.e. the thickness of cemented soil) made the failure mode of square pile-cemented soil interface change from progressive failure to brittle failure. The maximum skin friction of square pile-cemented soil interface increased with curing time, as the maximum skin friction increased with the increase of cemented soil strength. The stress concentration occurred at the corners of the square pile during the shear tests, which hampered the frictional capacity of square pile-cemented soil interface.



Key wordspre-bored grouted planted pile      square pile-cemented soil interface      three-dimensional interface shear test      side length of square pile      curing time     
Received: 12 August 2022      Published: 17 July 2023
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(52108350; 51978610; 52078457);中央高校基本科研业务费资助项目(2021QNA402)
Corresponding Authors: Jia-jin ZHOU     E-mail: 22012008@zju.edu.cn;zhoujiajin@zju.edu.cn
Cite this article:

Jian-fei REN,Jia-jin ZHOU,Xiao-nan GONG,Jian-lin YU. Experimental study on frictional capacity of square pile-cemented soil interface. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1374-1381.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.07.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I7/1374


方桩-水泥土接触面摩擦特性试验研究

通过一系列三维桩土接触面剪切试验,研究方桩–水泥土接触面的摩擦特性,主要研究方桩边长、水泥土龄期对接触面摩擦特性的影响. 研究结果表明,方桩–水泥土接触面最大桩顶荷载随着方桩边长的增加而呈现先增大后减小的趋势,方桩–水泥土接触面最大桩顶荷载随着养护时间的增加而增加. 方桩–水泥土接触面的最大侧摩阻力随着方桩边长的增加而减小. 方桩边长的增加,即水泥土厚度的减小,使得方桩–水泥土接触面的破坏模式由渐进破坏转变为脆性破坏. 方桩–水泥土接触面最大侧摩阻力随着养护时间的增加而增加,即最大侧摩阻力随着水泥土强度的增加而增大. 在剪切试验过程中,方桩角点处出现应力集中,不利于方桩–水泥土接触面摩擦特性的发挥.


关键词: 静钻根植桩,  方桩–水泥土接触面,  三维剪切试验,  方桩边长,  龄期 
Fig.1 Schematic of pile–soil interface shear test
Fig.2 Photograph of square piles with different side length
Fig.3 Photograph of square piles-cemented soil interface specimen
Fig.4 Load-displacement curve (curing time: 3 days)
Fig.5 Photograph of 36 mm square pile after shear test
Fig.6 Photograph of 45.5 mm square pile after shear test
Fig.7 Load – displacement curve (curing time: 7 days)
Fig.8 Load-displacement curve (curing time: 14 days)
Fig.9 Skin friction-relative displacement curve (curing time: 3 days)
Fig.10 Skin friction-relative displacement curve (curing time: 7 days)
Fig.11 Skin friction-relative displacement curve (curing time: 14 days)
Fig.12 Relationship curve between maximum skin friction and side length of square pile
Fig.13 Relationship between normalized maximum skin friction and cemented soil strength
[1]   FLEMING K, WELTMAN A, RANDOLPH M, et al. Piling engineering [M]. 3rd ed. London: Taylor & Francis, 2009.
[2]   WHITE D, FINLAY T, BOLTON M, et al. Press-in piling: ground vibration and noise during pile installation [EB/OL]. [2022-08-01]. https://ascelibrary.org/doi/abs/10.1061/40601%28256%2926.
[3]   周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报: 工学版, 2014, 48 (5): 835- 842
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Performance of static drill rooted nodular piles under compression[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (5): 835- 842
[4]   周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩在软土地基中的应用及其承载力计算[J]. 岩石力学与工程学报, 2014, 33 (Supple.2): 4359- 4366
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Application of static drill rooted precast nodular pile in soft soil foundation and calculation for bearing capacity[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (Supple.2): 4359- 4366
[5]   周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩抗拔承载性能试验研究[J]. 岩土工程学报, 2015, 37 (3): 570- 576
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Behavior of the static drill rooted nodular piles under tension[J]. Chinese Journal of Geotechnical Engineering, 2015, 37 (3): 570- 576
doi: 10.11779/CJGE201503024
[6]   周佳锦, 龚晓南, 王奎华, 等 层状地基中静钻根植竹节桩单桩沉降计算[J]. 岩土力学, 2017, 38 (1): 109- 116
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al A simplified approach to calculating settlement of a single pre-bored grouting planted nodular pile in layered soils[J]. Rock and Soil Mechanics, 2017, 38 (1): 109- 116
[7]   ZHOU J, GONG X, WANG K, et al Testing and modeling the behavior of pre-bored grouting planted piles under compression and tension[J]. Acta Geotechnica, 2017, 12 (5): 1061- 1075
[8]   ZHOU J, GONG X, ZHANG R Model tests to compare the behavior of pre-bored grouted planted piles and wished-in-place concrete pile in dense sand[J]. Soils and Foundations, 2019, 59 (1): 84- 96
doi: 10.1016/j.sandf.2018.09.003
[9]   ZHOU J, GONG X, ZHANG R, et al Field behavior of pre-bored grouted planted nodular pile embedded in deep clayey soil[J]. Acta Geotechnica, 2020, 15 (7): 1847- 1857
doi: 10.1007/s11440-019-00891-x
[10]   ZHOU J, YU J, GONG X, et al Field study on the behavior of pre-bored grouted planted pile with enlarged grout base[J]. Acta Geotechnica, 2021, 16 (10): 3327- 3338
doi: 10.1007/s11440-021-01208-7
[11]   ZHOU J, GONG X, WANG K, et al Shaft capacity of the pre-bored grouted planted pile in dense sand[J]. Acta Geotechnica, 2018, 13 (5): 1227- 1239
doi: 10.1007/s11440-018-0643-8
[12]   TOMLINSON M. Pile design and construction practice [M]. 3rd ed. London: Palladin, 1987.
[13]   RANDOLPH M Science and empiricism in pile foundation design[J]. Geotechnique, 2003, 53 (10): 847- 875
doi: 10.1680/geot.2003.53.10.847
[14]   JARDINE R, CHOW F, OVERY R, et al. ICP design methods for driven piles in sands and clays [M]. London: Thomas Telford, 2005.
[15]   ZHOU J, YU J, GONG X, et al The effect of cemented soil strength on the frictional capacity of precast concrete pile–cemented soil interface[J]. Acta Geotechnica, 2020, 15 (11): 3271- 3282
[16]   WILLIAMS A, JOHNSTON I, DONANLD I. The design of socketed piles in weak rock [C]// International Conference on Structural Foundations on Rock. Sydney: [s. n. ], 1980: 327–347.
[17]   O’ NEILL M, TOWNSEND F, HASSAN K, et al. Load transfer for drilled shafts in intermediate geomaterials: FHWA-RD-95-172 [R]. [S. l. ]: U. S. Department of Transportation, 1995.
[18]   NAM M, VIPULANANDAN C Roughness and unit side resistances of drilled shafts socketed in clay shale and limestone[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134 (9): 1272- 1279
doi: 10.1061/(ASCE)1090-0241(2008)134:9(1272)
[19]   SEIDEL J, COLLINGWWOOD B A new socket roughness factor for prediction of rock socket shaft resistance[J]. Canadian Geotechnical Journal, 2001, 38 (1): 138- 153
doi: 10.1139/t00-083
[20]   ASEM P, GARDONI P Evaluation of peak side resistance for rock socketed shafts in weak sedimentary rock from an extensive database of published field load tests: a limit state approach[J]. Canadian Geotechnical Journal, 2019, 56 (12): 1816- 1831
doi: 10.1139/cgj-2018-0590
[21]   SAIANG D, MALMGREN L, NORDLUND E Laboratory tests on shotcrete-rock joints in direct shear, tension and compression[J]. Rock Mechanics and Rock Engineering, 2005, 38 (4): 275- 297
doi: 10.1007/s00603-005-0055-6
[22]   TIAN H, CHEN W, YANG D, et al Experimental and numerical analysis of the shear behaviour of cemented concrete–rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48 (1): 213- 222
doi: 10.1007/s00603-014-0560-6
[23]   ZHOU J, YU J, GONG X, et al Field tests on behavior of pre-bored grouted planted pile and bored pile embedded in deep soft clay[J]. Soils and Foundations, 2020, 60 (2): 551- 561
doi: 10.1016/j.sandf.2020.03.013
[24]   刘清瑶, 周佳锦, 龚晓南, 等 软土地基中预应力竹节桩承载性能数值模拟[J]. 湖南大学学报: 自然科学版, 2023, 50 (3): 235- 244
LIU Qing-yao, ZHOU Jia-jin, GONG Xiao-nan, et al Numerical simulation on the bearing capacity of pre-stressed high strength concrete nodular pile in soft soil area[J]. Journal of Hunan University: Natural Sciences, 2023, 50 (3): 235- 244
[25]   俞建霖, 徐嘉诚, 周佳锦, 等 混凝土芯水泥土复合桩混凝土-水泥土界面摩擦特性试验研究[J]. 土木工程学报, 2022, 55 (8): 93- 104
YU Jian-lin, XU Jia-cheng, ZHOU Jia-jin, et al Experimental study of frictional capacity of concrete-cemented soil interface of concrete-cored cemented soil column[J]. China Civil Engineering Journal, 2022, 55 (8): 93- 104
[1] Chun-yang LIU,Peng-fei FANG,Ri-hong ZHANG,Xin-yu XIE,Yang LOU,Qiu-shan ZHANG,Da-yong ZHU. Experimental study on thermo-mechanical properties of geothermal energy pile considering intermittent ratio[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 562-572.
[2] Zhi-gang CAO,Si-qi WANG,Yi-fei XU,Xiao-dong BAI,Zong-hao YUAN,Xia-fei MA. Vibration mitigation mechanism and effect of ballast mats for over-track buildings on metro depot[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(1): 71-80.
[3] Sheng-quan ZHOU,Hao-jin ZHANG,Rui WANG,Yong-fei ZHANG,Dong-wei LI. Bearing characteristics of cement-fly ash mixing pile composite foundation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1724-1731.
[4] Shuang ZHAO,Kui-hua WANG,Jun-tao WU. Accumulated response of single batter pile under lateral cyclic loading in sand[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1310-1319.
[5] Xiao-wu TANG,Yuan ZOU,Wei-kang LIN,Wen-fang ZHAO,Tian-qi WANG. Model experiment on improving bearing capacity of perforated pipe piles by vacuum consolidation[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(7): 1320-1327.
[6] Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.
[7] Lei WANG,Feng YU,Jing-jie PAN. Influence of jacking open-ended tubular piles on bearing behavior of existing in-service piles[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2243-2251.
[8] Shuang ZHAO,Jun-tao WU,Xin-chen QIU,Kui-hua WANG,Yuan TU. Study on defect detection of extended pile shaft under lateral low-strain integrity test[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1867-1876.
[9] Kai-jun LOU,Feng YU,Tang-dai XIA,Jian MA. Stability analysis of diaphragm wall retained structure in clay[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1697-1705.
[10] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[11] Jun-tao WU,Kui-hua WANG,Xin LIU,Fan SUN. Dynamic response of pile-surrounding soil based on inversion of existing pile dynamic theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 521-528.
[12] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[13] Wen-jie ZHOU,Li-zhong WANG,Lv-jun TANG,Zhen GUO,Sheng-jie RUI,Yu-pei HUANG. Numerical analysis of dynamic responses of jacket supported offshore wind turbines[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1431-1437.
[14] De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.
[15] WU Yi qian,ZHU Yan peng. Improved calculation of settlement due to dewatering of foundation pits in phreatic aquifer[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2188-2197.