Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (10): 1867-1876    DOI: 10.3785/j.issn.1008-973X.2021.10.008
    
Study on defect detection of extended pile shaft under lateral low-strain integrity test
Shuang ZHAO1,2(),Jun-tao WU1,2,Xin-chen QIU1,2,Kui-hua WANG1,2,*(),Yuan TU1,2
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. Key Laboratory of Soft Soils and Geoenvironmental Engineering of Ministry of Education, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2393KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The lateral velocity response of an extended pile shaft with defects of various sizes in the buried section was analyzed through model experiment, and the results were analyzed by combining with finite element analysis (FEA) results. Results show that the low-strain integrity test based on the lateral vibration characteristics of the pile can be used to distinguish the defects on extended pile shaft. The smaller the cross-sectional diameter of the defect is, the more obvious the reflection of the defect on the lateral velocity response of the pile is. As the height of the defect changes, the reflection of the top and bottom of the defect may superpose or separate, reflecting waveforms of the defect under different defect heights are inconsistent. The FEA results accorded well with the experimental results when adopting the shear flexible beam element of FEA to simulate the extended pile shaft. It is recommended that the excitation and receiving positions are both near the cap when conducting low-strain integrity test based on the lateral vibration characteristics of the pile. The depth of the defect can be inferred from the arrival time of the reflection of the defect in practical engineering.



Key wordsextended pile shaft      lateral vibration      low-strain      defect detection     
Received: 06 November 2020      Published: 27 October 2021
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(52178358,51779217)
Corresponding Authors: Kui-hua WANG     E-mail: gnauhszhao@163.com;zdwkh0618@zju.edu.cn
Cite this article:

Shuang ZHAO,Jun-tao WU,Xin-chen QIU,Kui-hua WANG,Yuan TU. Study on defect detection of extended pile shaft under lateral low-strain integrity test. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1867-1876.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.10.008     OR     https://www.zjujournals.com/eng/Y2021/V55/I10/1867


基于水平低应变法的高承台桩缺陷检测研究

通过模型试验探究高承台桩埋藏段存在不同尺寸缺陷时的桩身质点水平速度响应,结合有限元(FEA)分析试验结果. 结果表明,基于桩的水平振动特性的低应变检测方法可以用于识别高承台桩桩身缺陷,且缺陷处截面直径越小,桩身质点水平速度响应曲线中缺陷处反射越明显. 随着缺陷高度的变化,缺陷处顶、底面反射信号可能会产生叠加或分离现象,导致不同缺陷高度下缺陷反射的波形不一致. 在数值模拟中,当采用柔性剪切梁单元模拟高承台桩时,数值模拟结果和试验结果吻合较好. 在实际工程中,当应用水平低应变法检测桩身完整性时,推荐采取近承台处激振、近承台处速度采集,可以根据缺陷处反射起振时间较精确地计算桩身缺陷埋深.


关键词: 高承台桩,  水平振动,  低应变,  缺陷检测 
Fig.1 Schematic of numerical model for analyzing lateral vibration response of extended pile shaft
部件 密度/(kg·m?3 弹性模量/MPa 泊松比
2500 40000 0.15
1800 30 0.35
Tab.1 Default parameters of numerical model for analyzing lateral vibration response of extended pile shaft
Fig.2 Curve of elastic impact force
Fig.3 Calculation examples of defect depth prediction based on lateral response of pile
Fig.4 Schematic diagram of path of reflected wave at defect
算例 h3 /m td /ms hpd /m |hpd ? h3| /m
算例1 0.50 3.8 0.57 0.07
算例2 5.50 7.8 5.90 0.40
算例3 0.80 5.6 0.80 0
算例4 8.00 11.6 8.50 0.50
Tab.2 Comparison of predicted depth and actual depth of defect
Fig.5 Lateral response of pile under different duration of excitation
Fig.6 Schematic of model experiment of lateral low-strain integrity test on extended pile shaft
部件 密度/(kg·m?3 弹性模量/MPa 泊松比
1 050 2 200 0.12
1 800 20 0.35
Tab.3 Default parameters of numerical model of lateral low-strain integrity test on extended pile shaft
Fig.7 Comparison of lateral velocity response of integrate pile between FEA results and experimental results
Fig.8 Comparison of lateral response of intact and defective piles under different excitation and receiving positions
Fig.9 Lateral response of pile under different defect diameter
Dd /cm h3 /m td /ms hpd /m |hpd ? h3| /m
5.0 0.03
4.0 0.03 2.2 0.11 0.08
3.0 0.03 2.1 0.06 0.03
2.0 0.03 2.1 0.06 0.03
1.5 0.03 2.0 0.02 0.01
Tab.4 Comparison of predicted depth and actual depth of defect
Fig.10 Lateral response of pile under different defect length
s /cm h3 /m td /ms hpd /m |hpd ? h3| /m
3 0.03 2.2 0.11 0.08
5 0.03 2.0 0.02 0.01
10 0.03 2.0 0.02 0.01
20 0.03 2.0 0.02 0.01
50 0.03 2.1 0.06 0.03
Tab.5 Comparison of predicted depth and actual depth of defect
Fig.11 Lateral response of pile under different heights of defect
Fig.12 Lateral response of pile under different buried depths of defect
h3 /m td /ms hpd /m |hpd ? h3| /m
0.03 2.0 0.02 0.01
0.46 2.9 0.45 0.01
0.80 3.6 0.79 0.01
Tab.6 Comparison of predicted depth and actual depth of defect
Fig.13 Lateral response of pile under different shear wave velocities of soil
[1]   中华人民共和国行业标准编写组. 建筑桩基技术规范: JGJ 94-2008 [S]. 北京: 中国建筑工业出版社, 2008.
[2]   陈凡. 基桩质量检测技术[M]. 北京: 中国建筑工业出版社, 2014.
[3]   王奎华, 谢康和, 曾国熙 有限长桩受迫振动问题解析解及其应用[J]. 岩土工程学报, 1997, 19 (6): 27- 35
WANG Kui-hua, XIE Kang-he, ZENG Guo-xi Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19 (6): 27- 35
doi: 10.3321/j.issn:1000-4548.1997.06.007
[4]   王奎华 成层广义Voigt地基中粘弹性桩纵向振动分析与应用[J]. 浙江大学学报: 工学版, 2002, 36 (5): 565- 571
WANG Kui-hua Analysis and application of longitudinal vibration of viscoelastic pile in layered generalized Voigt Foundation[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (5): 565- 571
[5]   王奎华, 谢康和 变截面阻抗桩受迫振动问题解析解及应用[J]. 土木工程学报, 1998, 31 (6): 56- 67
WANG Kui-hua, XIE Kang-he An analytical solution to force vibration of foundation pile under exciting force and its application[J]. China Civil Engineering Journal, 1998, 31 (6): 56- 67
[6]   吴君涛, 王奎华, 高柳, 等 考虑桩身材料阻尼的桩基纵向振动积分变换解及其应用[J]. 岩石力学与工程学报, 2017, 36 (9): 2305- 2312
WU Jun-tao, WANG Kui-hua, GAO Liu, et al Study on longitudinal vibration of a viscoelastic pile by integral transformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2305- 2312
[7]   EI NAGGAR M H Vertical and torsional soil reactions for radially inhomogeneous soil layer[J]. Structural Engineering and Mechanics, 2000, 10 (4): 299- 312
doi: 10.12989/sem.2000.10.4.299
[8]   吴君涛, 王奎华, 肖偲, 等 静钻根植工法下变截面管桩纵向振动特性分析[J]. 岩石力学与工程学报, 2018, 37 (4): 1030- 1040
WU Jun-tao, WANG Kui-hua, XIAO Si, et al Longitudinal vibration characteristics of static drill rooted tubular piles with variable section[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (4): 1030- 1040
[9]   WU J, WANG K, GAO L, et al Study on longitudinal vibration of a pile with variable sectional acoustic impedance by integral transformation[J]. Acta Geotechnica, 2019, 14 (6): 1857- 1870
doi: 10.1007/s11440-018-0732-8
[10]   陈凡, 王仁军 尺寸效应对基桩低应变完整性检测的影响[J]. 岩土工程学报, 1998, 20 (5): 92- 96
CHEN Fan, WANG Ren-jun Effect of size effect on low strain integrity test of pile[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (5): 92- 96
doi: 10.3321/j.issn:1000-4548.1998.05.021
[11]   吴斌杰, 王奎华, 童魏烽, 等 基桩完整性检测中的尺寸效应及桩身阻抗变化效应[J]. 岩石力学与工程学报, 2019, 38 (Supple.1): 3229- 3237
WU Bin-jie, WANG Kui-hua, TONG Wei-feng, et al Size effect and pile impedance variation in pile integrity test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (Supple.1): 3229- 3237
[12]   DAVIS A G Nondestructive evaluation of existing deep foundations[J]. Journal of Performance of Constructed Facilities, 1995, 9 (1): 57- 74
doi: 10.1061/(ASCE)0887-3828(1995)9:1(57)
[13]   陈龙珠, 赵荣欣 旁孔透射波法确定桩底深度计算方法评价[J]. 地下空间与工程学报, 2010, 6 (1): 157- 161
CHEN Long-zhu, ZHAO Rong-xin On determination of pile length with parallel seismic testing for existing structure[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 157- 161
[14]   吴君涛, 王奎华, 刘鑫, 等 缺陷桩周围成层土振动响应解析解及其在旁孔透射波法中的应用[J]. 岩石力学与工程学报, 2019, 38 (1): 203- 216
WU Jun-tao, WANG Kui-hua, LIU Xin, et al An analytical solution of dynamic responses of multi-layered soil around a defect pile and its application in parallel seismic method[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (1): 203- 216
[15]   WU J, WANG K, EI NAGGAR M H Dynamic response of a defect pile in layered soil subjected to longitudinal vibration in parallel seismic integrity testing[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 168- 178
doi: 10.1016/j.soildyn.2019.03.010
[16]   WU J, WANG K, EI NAGGAR M H Dynamic soil reactions around pile-fictitious soil pile coupled model and its application in parallel seismic method[J]. Computers and Geotechnics, 2019, 110: 44- 56
doi: 10.1016/j.compgeo.2019.02.011
[17]   WU Jun-tao, WANG Kui-hua, EI NAGGAR M H Half-space dynamic soil model excited by known longitudinal vibration of a defective pile[J]. Computers and Geotechnics, 2019, 112: 403- 412
doi: 10.1016/j.compgeo.2019.05.006
[18]   EI NAGGAR M H, NOVAK M Nonlinear lateral interaction in pile dynamics[J]. Soil Dynamics and Earthquake Engineering, 1995, 14 (3): 141- 157
[19]   MYLONAKIS G, GAZETAS G Lateral vibration and internal forces of grouped piles in layered soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125 (1): 16- 25
doi: 10.1061/(ASCE)1090-0241(1999)125:1(16)
[20]   ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, et al Horizontal vibration of a large-diameter pipe pile in viscoelastic soil[J]. Mathematical Problems in Engineering, 2013, (4): 1- 13
[21]   龙丽丽. 不均匀土中非完整桩的横向振动问题[D]. 合肥: 合肥工业大学, 2010.
LONG Li-li. Lateral vibration problem of defective pile in non-homogeneous soil [D]. Hefei: Hefei University of Technology, 2010.
[22]   龙丽丽, 刘东甲, 蒋红 水平瞬态荷载下基桩的动力响应分析[J]. 合肥工业大学学报: 自然科学版, 2012, 35 (7): 951- 956
LONG Li-li, LIU Dong-jia, JIANG Hong Dynamic response of piles subjected to transient lateral loading[J]. Journal of Hefei University of Technology: Natural Science, 2012, 35 (7): 951- 956
[23]   龙丽丽, 刘东甲, 蒋红 Timoshenko梁模型下完整桩瞬态横向振动半解析解[J]. 合肥工业大学学报: 自然科学版, 2016, 39 (3): 368- 373
LONG Li-li, LIU Dong-jia, JIANG Hong Semi-analytical solution for transient lateral vibration of integrate piles based on Timoshenko beam model[J]. Journal of Hefei University of Technology: Natural Science, 2016, 39 (3): 368- 373
doi: 10.3969/j.issn.1003-5060.2016.03.017
[24]   WU J, EI NAGGAR M H, WANG K, et al Lateral vibration characteristics of an extended pile shaft under low-strain integrity test[J]. Soil Dynamics and Earthquake Engineering, 2019, 126: 105812
doi: 10.1016/j.soildyn.2019.105812
[25]   王腾, 王奎华, 谢康和 成层土中桩的纵向振动理论研究及应用[J]. 土木工程学报, 2002, 35 (1): 83- 87
WANG Teng, WANG Kui-hua, XIE Kang-he Theoretical study and application of longitudinal vibration of pile in layered soil[J]. China Civil Engineering Journal, 2002, 35 (1): 83- 87
doi: 10.3321/j.issn:1000-131X.2002.01.017
[1] Yang-bo CHEN,Guo-dong YI,Shu-you ZHANG. Surface warpage detection method based on point cloud feature comparison[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 81-88.
[2] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[3] Zhong-wei QIN,Jie CHEN,Rong-jing HONG,Wei-wei WU. Visual salience detection algorithm for surface defects of friction sheets[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(10): 1883-1891.