Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (8): 1457-1466    DOI: 10.3785/j.issn.1008-973X.2019.08.004
Civil and Structural Engineering     
Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation
De-qi TANG1,2(),Feng YU1,2,*(),Xiang-guo HUANG3,Hai-bing CHEN1,2,Tang-dai XIA4
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Zhejiang Provincial Engineering and Technology Research Center of Assembly-Concrete Industrialized Buildings, Hangzhou 310018, China
3. Wuhan Municipal Construction Group Co. Ltd, Wuhan 430023, China
4. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1787KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The lateral displacement of passive soil induced by the excavation of existing buildings has significant impact on the bearing capacity of foundation piles within the pit. The load-bearing characteristics of foundation piles under the lateral movement of the passive soil were investigated through indoor model experiments. Focus was paid on the influences on the pile’s bending moment and shear force of a few factors such as the spacing between retaining and foundation piles, the excavation depth, the axial loading level at the top of the pile and the height of cap restraint. Results showed that under the cantilevered supported excavation condition, the displacement pattern of the passive soil resembled an inverted triangle. The bending moment and the shear force of the foundation pile had several heterogeneous peaks distributed along the pile. Based on this, the foundation pile from top to bottom was divided into three sections, i.e. the excavation-exposed section, the passive-load section and the active-effect section. The smaller the distance between the supporting and foundation piles and the deeper the excavation depth, the greater the bending moment and the shear force induced along the foundation pile. The coupling effect of axial loading and lateral displacement will further increase the bending moment of the foundation pile. The change of the height of the pile top restraint will affect the bending moment and the shear force of the pile. With other conditions being the same, the greater the height of the pile top restraint, the smaller the bending moment and the shear force of the pile. The research results can provide support for the engineering design of underground-storey supplement.



Key wordsunderground storey supplement      model test      foundation pile      bending moment      shear force     
Received: 08 June 2018      Published: 13 August 2019
CLC:  TU 473  
Corresponding Authors: Feng YU     E-mail: 1749569869@qq.com;pokfulam@zstu.edu.cn
Cite this article:

De-qi TANG,Feng YU,Xiang-guo HUANG,Hai-bing CHEN,Tang-dai XIA. Chamber tests for investigating additional internal forces in existing foundation piles induced by excavation. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1457-1466.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.08.004     OR     http://www.zjujournals.com/eng/Y2019/V53/I8/1457


开挖诱发坑内既有基桩附加内力的模型试验

既有建筑下挖改造引起的基坑被动区土体侧移会对坑内基桩承载性产生重要影响. 通过室内模型试验研究坑内基桩在被动区土体侧移作用下的桩身受力特性,重点分析支护结构与坑内基桩距离、开挖深度、桩顶竖向荷载及承台约束高度对基桩弯矩和剪力的影响. 试验结果表明,在悬臂式支护开挖条件下,被动区土体位移模式呈倒三角形,基桩弯矩和剪力沿桩身分布具有多个异号峰值,桩身自上而下可分为开挖裸露段、被动受荷段和主动作用段. 基桩与支护水平间距越小、基坑下挖深度越大,基桩各部位弯矩和剪力越大,且竖向受荷和桩身侧向变形的耦合效应将使桩身弯矩变大. 桩顶约束高度的改变会对基桩弯矩和剪力产生影响,在其他条件相同时,约束高度越大,基桩弯矩和剪力越小. 研究结果可为地下增层工程的设计提供支撑.


关键词: 地下增层,  模型试验,  基桩,  弯矩,  剪力 
Fig.1 Schematic diagram of additional effects on foundation pile induced by underground storey supplement
Fig.2 Schematic diagram of test chamber
Fig.3 Schematic diagram of model pile instrumented with strain gauges
Fig.4 Sketch of underground storey supplement model test
Fig.5 Load-settlement curve for single pile obtained from static load test
L/cm h=0 cm h=10 cm
P=0 N P=25 N P=50 N P=0 N
10 G1 G2 G3 G13
15 G4 G5 G6 ?
20 G7 G8 G9 ?
25 G10 G11 G12 ?
Tab.1 Grouping scheme of underground storey supplement model test
Fig.6 Variation of turning angle and displacement at pile top with excavation depth
Fig.7 Distribution of bending moment along supporting pile under different excavation depths
Fig.8 Variation in deflection of supporting pile under different excavation depths
Fig.9 Distribution of bending moment along foundation pile G1 under different excavation depths
Fig.10 Distribution of shear force along foundation pile G1 under different excavation depths
Fig.11 Distribution of bending moment along foundation piles under different distances with excavation depth of 40 cm
Fig.12 Distribution of shear force along foundation piles under different distances with excavation depth of 40 cm
Fig.13 Variation in peak bending moment of piles under different distances
Fig.14 Variation in peak shear force of piles under different distances
Fig.15 Model of foundation piles under existing building subjected to underground storey supplement
Fig.16 Comparison of bending moment of foundation piles with different cap elevations
Fig.17 Comparison of shear force of foundation piles with different cap elevations
Fig.18 Axial force distribution of test piles G2 and G3 along foundation piles under different excavation depths
Fig.19 Effect of axial load on bending moment of foundation pile
Fig.20 Variation in maximum bending moments of test piles
[1]   马景月 城市地下空间与开发利用规划[J]. 地下空间, 2002, 22 (3): 200- 208
MA Jing-yue Urban underground space and development and utilization planning[J]. Chinese Journal of Underground Space, 2002, 22 (3): 200- 208
doi: 10.3969/j.issn.1673-0836.2002.03.003
[2]   苟尧泊, 俞峰, 夏唐代 增层开挖引起的既有预制桩残余应力释放分析[J]. 浙江大学学报: 工学版, 2015, 49 (5): 969- 974
GOU Yao-bo, YU Feng, XIA Tang-dai Release of residual stress in existing preformed pile due to further excavation beneath pile raft[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (5): 969- 974
[3]   伍程杰, 龚晓南, 俞峰, 等 既有高层建筑地下增层开挖柱端阻力损失[J]. 浙江大学学报: 工学版, 2015, 48 (4): 671- 678
WU Cheng-jie, GONG Xiao-nan, YU Feng, et al Pile base resistance loss for excavation beneath existing high-rise building[J]. Journal of Zhejiang University: Engineering Science, 2015, 48 (4): 671- 678
[4]   单华峰, 夏唐代, 俞峰, 等 软土地区地下室增层开挖对既有桩基沉降性状的影响[J]. 中南大学学报: 自然科学版, 2016, 47 (6): 1995- 2000
SHAN Hua-feng, XIA Tang-dai, YU Feng, et al Settlement analysis of building piles associated with excavation beneath existing basement in soft soil[J]. Journal of Central South University: Engineering Science, 2016, 47 (6): 1995- 2000
[5]   单华峰, 夏唐代, 俞峰, 等 下挖增层桩顶约束对基桩屈曲稳定临界荷载影响分析[J]. 岩土工程学报, 2017, 39 (增2): 49- 52
SHAN Hua-feng, XIA Tang-dai, YU Feng, et al Critical buckling capacity of piles with different pile-head constraints for excavation beneath existing foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (增2): 49- 52
[6]   杨敏, 朱碧堂, 陈福全, 等 堆载引起某厂房坍塌事故的初步分析[J]. 岩土工程学报, 2002, 24 (4): 446- 450
YANG Min, ZHU Bi-tang, CHEN Fu-quan, et al Pilot study on collapse of an industrial building due to adjacent surcharge loads[J]. Chinese Journal of Geotechnical Engineering, 2002, 24 (4): 446- 450
doi: 10.3321/j.issn:1000-4548.2002.04.008
[7]   BYRNE P M, ANDERSON D L, JANZEN W Response of piles and casings to horizontal free-field soil displacements[J]. Canadian Geotechnical Journal, 1984, 21 (4): 720- 725
doi: 10.1139/t84-079
[8]   杨敏, 周洪波 承受侧向土体位移桩基的一种耦合算法[J]. 岩石力学与工程学报, 2005, 24 (24): 4491- 4497
YANG Min, ZHOU Hong-bo A coupling analytical solution of piles subjected to lateral soil movements[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (24): 4491- 4497
doi: 10.3321/j.issn:1000-6915.2005.24.015
[9]   GOH A T C, WONG K S Analysis of piles subjected to embankment induced lateral soil movements[J]. Journal of Geotechnical Engineering, ASCE, 1997, 123 (9): 792- 801
doi: 10.1061/(ASCE)1090-0241(1997)123:9(792)
[10]   梁发云, 于峰, 李镜培, 等 土体水平位移对邻近既有桩基承载性状影响分析[J]. 岩土力学, 2010, 31 (2): 449- 454
LIANG Fa-yun, YU Feng, LI Jing-pei, et al Analysis of the bearing capacity of a single pile under adjacent building subjected to lateral soil movements[J]. Rock and Soil Mechanics, 2010, 31 (2): 449- 454
doi: 10.3969/j.issn.1000-7598.2010.02.020
[11]   梁发云, 廖晨聪, 毛磊, 等 竖向-水平荷载联合作用下单桩性状模型试验研究[J]. 建筑结构, 2013, 43 (6): 92- 98
LIANG Fa-yun, LIAO Chen-cong, MAO Lei, et al Model tests on the behavior of a single pile under vertical-horizontal load[J]. Building Structure, 2013, 43 (6): 92- 98
[12]   姚国胜, 梁发云, 李镜培, 等 土体侧移作用下轴向荷载单桩承载性状数值分析[J]. 同济大学学报: 自然科学版, 2011, 39 (1): 1- 6
YAO Guo-sheng, LIANG Fa-yun, LI Jing-pei, et al 3D numerical analysis for behavior of axially loaded pile subjected to lateral soil movement[J]. Journal of Tongji University: Nature Science, 2011, 39 (1): 1- 6
[13]   袁炳祥, 吴跃东, 陈锐, 等 侧向受荷桩周土体内部位移场的模型试验研究[J]. 浙江大学学报: 工学版, 2016, 50 (10): 2031- 2036
YUAN Bing-Xiang, WU Yue-dong, CHEN Rui, et al Model tests displacement field of internal soil induced by laterally loading pile[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (10): 2031- 2036
[14]   龚晓南, 伍程杰, 俞峰, 等 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35 (11): 1957- 1964
GONG Xiao-nan, WU Cheng-jie, YU Feng, et al Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (11): 1957- 1964
[15]   苟尧泊. 地下增层改造条件下黏土材料与混凝土基桩的界面剪切行为[D]. 杭州: 浙江理工大学, 2015.
GOU Yao-bo. Interface shear behavior between clayey soil material and concrete foundation pile subjected to basement-supplement retrofit [D]. Hangzhou: Zhejiang Sci-Tech University, 2015.
[16]   郑刚, 聂冬清, 程雪松, 等 基坑分级支护的模型试验研究[J]. 岩土工程学报, 2017, 39 (5): 784- 793
ZHENG Gang, NIE Dong-qing, CHENG Xue-song, et al Experimental study on multi-bench retaining foundation pit[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (5): 784- 793
doi: 10.11779/CJGE201705002
[17]   LEUNG C F, CHOW Y K, SHEN R F Behaviour of pile subject to excavation-induced soil movement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126 (11): 947
doi: 10.1061/(ASCE)1090-0241(2000)126:11(947)
[18]   POULOS H G Analysis of piles in soil undergoing lateral movement[J]. Journal of Soil Mechanics and Foundation Engineering, 1973, 99 (SM5): 391
[19]   TERZAGHI K. Theoretical soil mechanics [M]. New York: John Wiley and Sons, 1943: 12–18.
[20]   彭述权. 砂土挡墙破坏机理宏细观研究[D]. 上海: 同济大学, 2007.
PENG Shu-quan. Macro-scale and meso-scale study on failure mechanism of sand retaining wall [D]. Shanghai: Tongji University, 2007.
[1] Jing-jing LIU,Tie-lin CHEN,Mao-hong YAO,Yu-xin WEI,Zi-jian ZHOU. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1715-1726.
[2] Ya-ting ZHANG,Roesler Jeffery. Cracking of continuously reinforced concrete pavement based on large-scale model test[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1194-1201.
[3] Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.
[4] NIU Ji qiang, LIANG Xi feng, ZHOU Dan, LIU Tang hong. Equipment cabin aerodynamic performance of electric multiple unit going through tunnel by dynamic model test[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(7): 1258-1265.
[5] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 531-537.
[6] ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, ZHANG Ri-hong, YAN Tian-long. Model test on load transfer mechanism of a static drill rooted nodular pile[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 2-3.
[7] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 465-471.
[8] WU You-xia, WANG Zhan, ZHONG Run-hui2, LI Ling-ling, FENG Zhi-hong, WANG Qi. Analysis of interaction between dust break wall piles and soil
subjected to coal loading in soft foundation
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(3): 502-507.
[9] CHEN Guo-Xin, ZUO Xi, WANG Zhi-Hua, DU Xiu-Li, SUN Tian. Shaking table model test of subway station structure under
far field and near field ground motion
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1955-1961.