Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2243-2251    DOI: 10.3785/j.issn.1008-973X.2021.12.003
    
Influence of jacking open-ended tubular piles on bearing behavior of existing in-service piles
Lei WANG1,2(),Feng YU1,2,*(),Jing-jie PAN1,2
1. Institute of Foundation and Structure Technologies, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. Zhejiang Provincial Engineering and Technology Research Center of Assembly-Concrete Industrialized Buildings, Hangzhou 310018, China
Download: HTML     PDF(1019KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the classical pile side resistance formula and the round hole expansion theory, the effect of the implantation of new pipe piles on the bearing characteristics of in-service pile was calculated by considering the soil pressure coefficient, the growth rate of the soil plug, the plastic radius of the expansion hole and so on. Comparing the software and theoretical calculation results of finite factors, the effect of inter-pile soil extrusion caused by pipe piles is induced, so that the resistance on the side of the serving pile increases in a certain depth range, and the longer the pile length and the smaller the pile spacing, the more obvious the contribution is. The distance between the new pile and the in-service pile is less than 3 times the pile diameter, a local pile effect is formed so that the settlement of the top of the pile increases, when the pile works together. The distance is greater than 6 times the pile diameter, and the pressure of the pipe pile will has less effect on the existing pile side resistance and the group pile co-operation effect.



Key wordsunderground-storey supplement      open-ended tubular piles      in-service pile      bearing behavior      pile group effect     
Received: 17 January 2021      Published: 31 December 2021
CLC:  TU 473.1  
Fund:  浙江省自然科学基金重点资助项目(LZ17E080002);浙江省教育厅科研资助项目(Y201942631)
Corresponding Authors: Feng YU     E-mail: 2316376262@qq.com;pokfulam@zstu.edu.cn
Cite this article:

Lei WANG,Feng YU,Jing-jie PAN. Influence of jacking open-ended tubular piles on bearing behavior of existing in-service piles. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2243-2251.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.003     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2243


敞口管型桩压入对既有受荷桩基承载性状影响

基于经典桩侧摩阻力公式和圆孔扩张理论,优化考虑土压力系数、土塞增长率、扩孔塑性半径等问题,计算新增管桩的植入对在役桩承载性状的影响. 对比分析有限元的软件与理论计算结果,发现管型桩贯入引致的桩间土挤土效应,使在役桩侧摩阻力在一定深度范围内增加,且桩长越长、桩间距越小,贡献越明显. 新增桩与在役桩的距离小于3倍桩径,会形成局部群桩效应,使群桩协同工作时的桩顶沉降增加;距离大于6倍桩径,管型桩压入对既有桩侧摩阻力、群桩协同工作效应的影响较小.


关键词: 地下增层,  敞口管型桩,  在役桩,  承载性状,  群桩效应 
Fig.1 Schematic diagram of calculation points for unit side friction resistance of existing piles in service
Fig.2 Expansion stress model of circular hole of tubular pile
Fig.3 Variation diagram of soil squeezing stress with radial direction during pile driving
层号 名称 h/m $ \gamma $/(kN·m?3) $ k $/(m·d?1) $ c $/kPa $ \varphi $/(°) $ E_{50}^{{\text{ref}}} $/MPa $E_{{\rm{oed}}}^{{\rm{ref}}}$/MPa $ E_{{\text{ur}}}^{{\text{ref}}} $/MPa $ \lambda $
1 素填土 5.1 17.7 5.3×10?4 9.0 12.0 20.0 20.0 60.0 0.35
2 淤泥质粉质黏土 11.5 17.9 2.2×10?4 11.2 19.5 17.5 17.5 87.5 0.35
3 淤泥质黏土 6.0 17.1 1.3×10?4 19.6 7.0 15.0 42.2 75.0 0.35
4 黏土 5.0 19.0 3.0×10?4 37.0 14.5 36.5 35.0 109.5 0.35
5 粉质黏土 5.0 18.9 3.9×10?4 35.0 16.0 35.0 35.0 105.0 0.35
6 黏土 5.4 18.0 3.0×10?4 52.5 9.0 22.5 38.5 90.0 0.35
7 强风化安山岩 12.0 22.0 7.8×10?2 450.0 53.0 75.0 74.4 225.0 0.25
Tab.1 Physical and mechanical parameters of soils
d/m Qsu /kN S1/% S2/%
简单应力法 圆孔扩张法 有限元法
补桩前 1041.2 943.1 981.4 6.1 ?3.9
3D 1305.4 1201.1 1233.8 5.8 ?2.6
4D 1279.4 1183.5 1183.5 8.1 ?5.0
5D 1129.3 984.3 1042.3 8.3 ?5.5
6D 1074.5 934.7 991.2 8.4 ?5.7
Tab.2 Comparison of ultimate lateral friction resistance of in-service piles under different pile spacings with newly added pile length of 25 m
L/m Qsu /kN S1/% S2/%
简单应力法 圆孔扩张法 有限元法
补桩前 1041.2 943.1 981.4 6.1 ?3.9
15 1085.4 981.7 1001.3 8.4 2.0
20 1190.2 1042.2 1097.5 8.5 5.0
25 1305.4 1201.1 1233.8 5.8 2.6
Tab.3 Comparison of ultimate side friction resistance of in-service piles under different pile lengths with distance between newly added piles and in-service piles in 3D
d/m Qpu /kN S3 /%
球孔扩张法 有限元法
补桩前 5407.4 5535.2 ?2.3
3D 5731.4 5979.3 ?4.1
4D 5594.3 5871.3 ?4.7
5D 5519.0 5802.6 ?4.9
6D 5438.6 5701.1 ?4.6
Tab.4 Comparison of ultimate pile tip resistance of in-service piles under different pile spacings with newly added pile length of 25 m
Fig.4 Distribution of lateral friction resistance along with depth of newly added tubular piles of different lengths
[1]   龚晓南, 伍程杰, 俞峰, 等 既有地下室增层开挖引起的桩基侧摩阻力损失分析[J]. 岩土工程学报, 2013, 35 (11): 1957- 1984
GONG Xiao-nan, WU Cheng-jie, YU Feng, et al Shaft resistance loss of piles due to excavation beneath existing basements[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (11): 1957- 1984
[2]   伍程杰, 龚晓南, 俞峰, 等 既有高层建筑地下增层开挖桩端阻力损失[J]. 浙江大学学报:工学版, 2014, 48 (4): 671- 678
WU Cheng-jie, GONG Xiao-nan, YU Feng, et al Piles base resistance loss for excavation beneath existing high-rise building[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (4): 671- 678
[3]   童立元, 李洪江, 刘松玉, 等 基于静力触探试验的基坑开挖卸荷单桩水平承载力损失预测研究[J]. 岩土工程学报, 2019, 41 (3): 501- 508
TONG Li-yuan, LI Hong-jiang, LIU Song-yu, et al Prediction of lateral capacity losses of a single pile adjacent to excavation of foundation pits based on CPT tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (3): 501- 508
[4]   杨敏, 周洪波. 承受侧向土体位移桩基础的一种耦合算法[J]. 岩石力学与工程学报, 2005, 24(24): 4491-4497.
YANG Min, ZHOU Hong-bo. A coupling analytical solution of piles subjected to lateral soil movements [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, (24)24: 4491-4497.
[5]   POULOS H G Effect of pile driving on adjacent piles in clay[J]. Canadian Geotechnical Journal, 1994, 31 (6): 856- 867
doi: 10.1139/t94-102
[6]   梁发云, 于峰, 黄茂松 受土体侧向位移作用既有轴向受荷单桩的简化算法[J]. 同济大学学报:自然科学版, 2011, 39 (6): 807- 813
LIANG Fa-yun, YU Feng, HUANG Mao-song A simplified analysis method for an axially loaded single pile subjected to lateral soil movement[J]. Journal of Tongji University: Natural Science, 2011, 39 (6): 807- 813
doi: 10.3969/j.issn.0253-374x.2011.06.004
[7]   姜彤, 李博, 杨晓燕, 等 静压桩沉桩对既有桩桩周土影响的PIV试验研究[J]. 地下空间与工程学报, 2018, 14 (5): 1185- 1194
JIANG Tong, LI Bo, YANG Xiao-yan, et al Experimental study on the influence of pile driving by static pressure pile on soil near the existing pile using PIV technique[J]. Chinese Journal of Underground Space and Engineering, 2018, 14 (5): 1185- 1194
[8]   龚晓南, 李向红 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17 (4): 7- 12
GONG Xiao-nan, LI Xiang-hong Several mechanical problems in compacting effects of static piling in soft clay ground[J]. Engineering Mechanics, 2000, 17 (4): 7- 12
doi: 10.3969/j.issn.1000-4750.2000.04.002
[9]   姚建平, 刘振兴, 李镜培, 等 沉桩对邻近既有桩内力变形的影响分析[J]. 结构工程师, 2015, 31 (5): 121- 126
YAO Jian-ping, LIU Zhen-xing, LI Jing-pei, et al Analysis of effects of pile driving on lateral soil moment of adjacent driven pile[J]. Structural Engineers, 2015, 31 (5): 121- 126
doi: 10.3969/j.issn.1005-0159.2015.05.021
[10]   李镜培, 张凌翔, 李林, 等 天然饱和黏土中新、旧桩荷载−沉降关系研究[J]. 岩石力学与工程学报, 2016, 35 (9): 1906- 1915
LI Jing-pei, ZHANG Ling-xiang, LI Lin, et al Analysis of load-settlement relationship of new and old piles in natural saturated clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (9): 1906- 1915
[11]   HAGERTY D J, PECK P B Heave and lateral movements due to pile driving[J]. Journal of the Soil Mechanics and Foundations Division, 1971, 97 (11): 1513- 1532
doi: 10.1061/JSFEAQ.0001700
[12]   齐昌广, 郑金辉, 赖文杰, 等 开口管桩挤土效应的源汇理论分析及透明土试验对比研究[J]. 应用基础与工程科学学报, 2020, 28 (4): 938- 952
QI Chang-guang, ZHENG Jin-hui, LAI Wen-jie, et al Theoretical analysis of squeezing effect of open-ended pipe pile based on source-sink method and contrastive study of transparent soil model test[J]. Chinese Journal of Basic Science and Engineering, 2020, 28 (4): 938- 952
[13]   CHANDLER R J The shaft friction of piles in cohesive soils in terms of effective stresses[J]. Civil Engineering and Public Works Review, 1968, 63 (6): 48- 53
[14]   POTYONDY J G Skin friction between varies soils and construction materials[J]. Geotechnique, 1961, 11 (4): 339- 354
doi: 10.1680/geot.1961.11.4.339
[15]   FENGF R F, ZHANG Q Q, LIU S W Experimental study of the effect of excavation on existing loaded piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146 (9): 04020091
doi: 10.1061/(ASCE)GT.1943-5606.0002336
[16]   ZHANG Q Q, LIU S W, FENG R F, et al. Analytical method for prediction of progressive deformation mechanism of existing piles due to excavation beneath a pile supported building [J]. International Journal of Civil Engineering, 2019, 17(6): 751-763.
[17]   BROOMS B B Lateral resistance of piles in cohesionless soils[J]. Journal of the Soil Mechanics and Foundations Division, 1964, 90 (2): 27- 64
doi: 10.1061/JSFEAQ.0000611
[18]   梅国雄, 宰金珉 考虑变形的朗肯土压力模型[J]. 岩石力学与工程学报, 2001, 20 (6): 851- 854
MEI Guo-xiong, ZAI Jin-min Rankine earth pressure model considering deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (6): 851- 854
doi: 10.3321/j.issn:1000-6915.2001.06.022
[19]   雷华阳, 李肖, 陆培毅, 等 管桩挤土效应的现场试验和数值模拟[J]. 岩石力学, 2012, 33 (4): 1006- 1012
LEI Hua-yang, LI Xiao, LU Pei-yi, et al Field test and numerical simulation of squeezing effect of pipe pile[J]. Rock and Soil Mechanics, 2012, 33 (4): 1006- 1012
[20]   VESIC A C Expansion of cavities in the infinite soil mass[J]. Journal of Soil Mechanics and Foundations Division, 1972, 98 (3): 265- 290
doi: 10.1061/JSFEAQ.0001740
[21]   李月健, 陈云敏, 凌道盛 土体内空穴球形扩张问题的一般解及应用[J]. 土木工程学报, 2002, 35 (1): 93- 98
LI Yue-jian, CHEN Yun-min, LING Sheng-dao A general solution for the expansion of cavities in soil mass[J]. China Civil Engineering Journal, 2002, 35 (1): 93- 98
doi: 10.3321/j.issn:1000-131X.2002.01.019
[22]   刘俊伟, 张明义, 赵洪福, 等 基于球孔扩张理论和侧摩侧阻力退化效应的压桩力计算模拟[J]. 岩石力学, 2009, 30 (4): 1181- 1185
LIU Jun-wei, ZHANG Ming-yi, ZHAO Hong-fu, et al Computational simulation of jacking force based on spherical cavity expansion theory and friction fatigue effect[J]. Rock and Soil Mechanics, 2009, 30 (4): 1181- 1185
[23]   杨学林, 祝文畏, 周平槐 某既有高层建筑下方逆作开挖增建地下室设计关键技术[J]. 岩石力学与工程学报, 2018, 37 (Suppl.1): 3775- 3786
YANG Xue-lin, ZHU Wen-wei, ZHOU Ping-wei Design key technique of additional basement constructed by top-down excavation below the existing high-rise building[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (Suppl.1): 3775- 3786
[24]   中华人民共和国住房和城乡建设部. 建筑桩基技术规范: JGJ 94—2008 [S], 北京: 中国建筑工业出版社, 2008: 67-87.
[1] Jun-tao WU,Kui-hua WANG,Xin LIU,Fan SUN. Dynamic response of pile-surrounding soil based on inversion of existing pile dynamic theory[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 521-528.
[2] Jian-bin ZHAO,Yi-bo XI,Zhen-yu WANG. Fatigue damage calculation method of monopile supported offshore wind turbine[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1711-1719.
[3] YU Yan qiu, WANG Kui hua, LV Shu hui, XU Li ge. Impact of accelerometer adhesive on low strain testing curves[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1725-1730.
[4] GOU Yao-bo, YU Feng, XIA Tang-dai. Release of residual stress in existing preformed pile due to further excavation beneath pile raft[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 969-974.
[5] WANG Zhong-jin, XIE Xin-yu, FANG Peng-fei,LI Jin-zhu, JIN Wei-liang. Analysis for calculation of nonlinear settlement of rigid long-short compound piles[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 463-470.
[6] WANG Kui-hua, WANG Ning, WU Wen-bing. Influence of weld on integrity testing of prestressed pipe piles[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1625-1632.
[7] ZHANG Zhong-miao, XIE Zhi-zhuan, LIU Jun-wei, YU Feng. The earth pressure during pile driving in silty soil
with mucky soil interbed
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1430-1434.
[8] ZHANG Zhong-miao, LIU Jun-wei, ZOU Jian, XIE Zhi-zhuan, HE Jing-yu. Experimental study on flexural and shearing property
of reinforced prestressed concrete pipe pile
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(6): 1074-1080.
[9] ZHANG Jun, ZHENG Dun-Jie, MA Jiang. Calculation for pile efficacy of geosynthetic-reinforced and
pilesupported embankment
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1950-1954.
[10] CHANG Lin yue, WANG Jin chang, ZHU Xiang rong, XIE Xin yu. Elastoplastic analytical computation of laterally loaded long pile[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 2029-2035.