Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (12): 2252-2259    DOI: 10.3785/j.issn.1008-973X.2021.12.004
    
Effect of buttress wall length on retaining wall deflection induced by dewatering
Chao-feng ZENG1,2(),Huan LIAO1,Miao-kun LI1,Xiu-li XUE1,Guo-xiong MEI2
1. Hunan Provincial Key Laboratory of Geotechnical Engineering for Stability Control and Health Monitoring, Hunan University of Science and Technology, Xiangtan 411201, China
2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
Download: HTML     PDF(1277KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A series of three-dimensional finite element numerical models were developed, on the basis of practical engineering geological conditions, to explore the effectiveness of buttress wall in reducing retaining wall deflection caused by pre-excavation dewatering. The influence of the buttress wall length on its deformation control effect under different dewatering depth and different penetration ratios were revealed. Results show that the deformation control effect of buttress wall on retaining wall is enhanced with the increase of the buttress wall length. The control efficiency of buttress wall on retaining wall deformation is different under different dewatering depth. When the dewatering depth is greater than 20 m, the length of the buttress wall should be over 0.75 B or set cross wall to totally connect two opposite retaining walls to achieve a satisfactory deformation control effect, where B is the foundation pit width. However, when the pumping depth is less than 10 m, the buttress wall length can be set as 0.25-0.5 B, and at this moment, a significant deformation control effect can be also achieved. Besides, control efficiency of buttress wall on deformation is different under different penetration depth of retaining wall. Extending the penetration depth of the retaining wall can enhance the deformation control effect of the buttress wall in the range of dewatering depth.



Key wordssoft soil      foundation pit dewatering      wall deflection      buttress wall      finite element calculation      penetration ratios     
Received: 04 January 2021      Published: 31 December 2021
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(51708206,51978261);湖南省自然科学基金资助项目(2020JJ5193,2020JJ4300);湖南省教育厅资助项目(20A190, 17B097)
Cite this article:

Chao-feng ZENG,Huan LIAO,Miao-kun LI,Xiu-li XUE,Guo-xiong MEI. Effect of buttress wall length on retaining wall deflection induced by dewatering. Journal of ZheJiang University (Engineering Science), 2021, 55(12): 2252-2259.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.12.004     OR     https://www.zjujournals.com/eng/Y2021/V55/I12/2252


内隔墙长度对抽水引发基坑围挡侧移的影响

结合实际工程地质条件,开展三维数值分析,研究内隔墙对限制开挖前抽水引发基坑围挡变形的有效性,探究在不同抽水深度与不同围挡嵌固比条件下,内隔墙长度对基坑围挡变形控制效果的影响. 结果表明:随内隔墙长度增大,内隔墙对基坑围挡变形的控制效果增强. 在不同抽水深度条件下,内隔墙对基坑围挡变形的控制效率不同,当抽水深度大于20 m时,内隔墙长度须大于基坑宽度的0.75倍或者采用全贯通式内隔墙,以取得较好的变形控制效果;当抽水深度小于10 m时,可将内隔墙长度设置为基坑宽度的0.25~0.50倍,预期也可取得较可观的变形控制效果. 在不同围挡嵌固深度条件下,内隔墙对变形的控制效率不同,延长基坑围挡嵌固深度能增强内隔墙在抽水深度范围内的变形控制效果.


关键词: 软土地基,  基坑抽水,  围护结构侧移,  内隔墙,  有限元计算,  嵌固比 
Fig.1 Layout of a metro excavation in Tianjin
Fig.2 Computed wall deflection at C3 and its comparisons with observed data
土性 H/m γ/(kN·m?3) ω /% e N ES /MPa c'/ kPa φ'/(°) K0/(m·d?1)
粉质黏土 5.5 19.35 29.90 0.811 4.4 4.00 18 20 0.49
黏质粉土 11 19.30 26.50 0.792 11.2 8.26 15 26 0.43
粉质黏土 19 20.10 26.40 0.696
7.5 5.80 20 21 0.50
砂质粉土 24 20.15 21.90 0.640 22.4 8.71 16 27 0.42
黏土 27 19.75 30.40 0.764 16.1 5.98 25 15 0.55
砂质粉土 33 20.65 20.20 0.583 26.7 8.29 14 27 0.35
粉质黏土 37 20.50 22.40 0.611 16.0 7.26 24 19 0.39
粉砂 42 20.50 18.20 0.585 49.3 10.50 8 37 0.30
粉质黏土 50 19.30 23.80 0.864 ? 6.20 17 23 0.39
Tab.1 Soil distribution and mechanical parameters of soil layers
土性 H/m λ κ M KV /(m·d?1) KH /(m·d?1)
粉质黏土 5.5 0.055 3 0.006 5 0.979 0.1 0.1
黏质粉土 11.0 0.031 2 0.003 6 1.192 0.5 0.5
粉质黏土 19.0 0.044 5 0.005 2 0.979 1.0×10?4 5.0×10?4
砂质粉土 24.0 0.029 3 0.003 4 1.202 1.0 1.0
黏土 27.0 0.039 7 0.004 6 0.800 1.0×10?5 5.0×10?5
砂质粉土 33.0 0.028 3 0.003 3 1.202 0.7 1.0
粉质黏土 37.0 0.032 0 0.003 7 0.900 3.0×10?4 5.0×10?4
粉砂 42.0 0.019 1 0.002 2 1.382 1.5 2.5
粉质黏土 50.0 0.030 5 0.003 5 0.900 2.0×10?4 5.0×10?4
Tab.2 Soil distribution and parameters used in mode
构件 E/GPa v Δs/mm μ 模拟单元
围护结构 30 0.2 5 0.3 C3D8I
降水井 210 0.2 5 0.3 S4
Tab.3 Parameters for retaining wall and dewatering well
Fig.3 Layout of buttress wall in model
工况组 B/m l/m Hd/m d/m R
20?0 20 0 11,16,19,21.5 27,33,37,41 0.534,0.875,1.102,1.386
20?5 20 5 11,16,19,21.5
20?10 20 10 11,16,19,21.5
20?15 20 15 11,16,19,21.5 27,33,37,41 0.534,0.875,1.102,1.386
20?20 20 20 11,16,19,21.5
Tab.4 Calculation cases for model with buttress wall
Fig.4 Finite element meshes of retaining wall and buttress wall for case of 20−10
Fig.5 Distribution of deflection on top of wall 2# along pit horizontal direction
Fig.6 Distribution of 2# wall deflection along depth at buttress wall section
Fig.7 Relationship of maximum wall deflection and l/B at buttress wall section
Fig.8 Relationship of normalized wall deflection and l/B
Fig.9 Relationship penetration ratios maximum wall deflection
Fig.10 Maximum deflection of wall 2# along pit length direction
Fig.11 Wall deflection along depth at buttress wall section
[1]   徐长节, 曾晓鑫, 戚晓锴, 等 拱形双排隔离桩位置对既有隧道的影响分析[J]. 铁道科学与工程学报, 2018, 15 (6): 1501- 1508
XU Chang-jie, ZENG Xiao-xin, QI Xiao-kai, et al Analysis of influence of position of arch double row isolated pile on existing tunnel[J]. Journal of Railway Science and Engineering, 2018, 15 (6): 1501- 1508
doi: 10.3969/j.issn.1672-7029.2018.06.019
[2]   陈仁朋, 孟凡衍, 李忠超, 等 邻近深基坑地铁隧道过大位移及保护措施[J]. 浙江大学学报:工学版, 2016, 50 (5): 856- 863
CHEN Ren-peng, MENG Fan-yan, LI Zhong-chao, et al Considerable displacement and protective measures for metro tunnels adjacent deep excavation[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (5): 856- 863
doi: 10.3785/j.issn.1008973X.2016.05.007
[3]   陈仁朋, 叶跃鸿, 王诚杰, 等 大型地下通道开挖对下卧地铁隧道上浮影响[J]. 浙江大学学报:工学版, 2017, 51 (7): 1269- 1277
CHEN Ren-peng, YE Yue-hong, WANG Cheng-jie, et al Influence of open-cut tunneling on uplift behavior of underlying metro tunnel[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1269- 1277
[4]   李卓峰, 林伟岸, 朱瑶宏, 等 坑底加固控制地铁基坑开挖引起土体位移的现场测试与分析[J]. 浙江大学学报:工学版, 2017, 51 (8): 1475- 1481
LI Zhuo-feng, LIN Wei-an, ZHU Yao-hong, et al Field test and analysis of controlling metro excavationsdeformation by foundation reinforcement[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1475- 1481
[5]   王灿, 凌道盛, 王恒宇 软土结构性对基坑开挖及邻近地铁隧道的影响[J]. 浙江大学学报:工学版, 2020, 54 (2): 264- 274
WANG Can, LING Dao-sheng, WANG Yu-heng, et al Influence of soft clay structure on pit excavation and adjacent tunnels[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (2): 264- 274
[6]   谢康和, 柳崇敏, 应宏伟, 等 成层土中基坑开挖降水引起的地表沉降分析[J]. 浙江大学学报:工学版, 2002, 36 (3): 239- 251
XIE Kang-he, LIU Chong-min, YING Hong-wei, et al Analysis of settlement induced by dewatering during excavation in layered soil[J]. Journal of Zhejiang University: Engineering Science, 2002, 36 (3): 239- 251
doi: 10.3785/j.issn.1008-973X.2002.03.002
[7]   TAN Y, LU Y, XU C, et al Investigation on performance of a large circular pit-in-pit excavation in clay-gravel-cobble mixed strata[J]. Tunnelling and Underground Space Technology, 2018, 79: 356- 374
doi: 10.1016/j.tust.2018.06.023
[8]   FINNO R J, KIM S, LEWIS J, et al Observed performance of a sheetpile-supported excavation in Chicago clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145 (2): 05018005
doi: 10.1061/(ASCE)GT.1943-5606.0002010
[9]   刘念武, 龚晓南, 楼春晖 软土地区基坑开挖对周边设施的变形特性影响[J]. 浙江大学学报:工学版, 2014, 48 (7): 1141- 1147
LIU Nian-wu, GONG Xiao-nan, LOU Chun-hui Deformation behavior of nearby facilities analysis induced by excavation in soft clay[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (7): 1141- 1147
[10]   WU Y X, LYU H M, HAN J, et al Dewatering-induced building settlement around a deep excavation in soft deposit in Tianjin, China[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145 (5): 05019003
doi: 10.1061/(ASCE)GT.1943-5606.0002045
[11]   曾超峰, 郑刚, 薛秀丽 大面积基坑开挖前预降水对支护墙变形的影响研究[J]. 岩土工程学报, 2017, 39 (6): 1012- 1021
ZENG Chao-feng, ZHENG Gang, XUE Xiu-li Wall deflection induced by pre-excavation dewatering in large-scale excavations[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (6): 1012- 1021
doi: 10.11779/CJGE201706006
[12]   WU Y X, SHEN S L, XU Y S Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: field observations[J]. Canadian Geotechnical Journal, 2015, 52 (10): 1526- 1538
doi: 10.1139/cgj-2014-0285
[13]   PUJADES E, VÀZQUEZ-SUÑÉ E, CARRERA J, et al Dewatering of a deep excavation undertaken in a layered soil[J]. Engineering Geology, 2014, 178: 15- 27
doi: 10.1016/j.enggeo.2014.06.007
[14]   郑刚, 赵悦镔, 程雪松, 等 复杂地层中基坑降水引发的水位及沉降分析与控制对策[J]. 土木工程学报, 2019, 52 (Suppl.1): 135- 142
ZHENG Gang, ZHAO Yue-bin, CHENG Xue-song, et al Strategy and analysis of the settlement and deformation caused by dewatering under complicated geological condition[J]. China Civil Engineering Journal, 2019, 52 (Suppl.1): 135- 142
[15]   姚天强, 石振华, 曹惠宾. 基坑降水手册[M]. 北京: 中国建筑工业出版社, 2006.
[16]   许烨霜, 沈水龙, 马磊 地下构筑物对地下水渗流的阻挡效应[J]. 浙江大学学报:工学版, 2010, 44 (10): 1902- 1906
XU Ye-shuang, SHEN Shui-long, MA Lei Cutoff effect of groundwater seepage due to existence of underground structure[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1902- 1906
doi: 10.3785/j.issn.1008-973X.2010.10.010
[17]   郑刚, 曾超峰 基坑开挖前潜水降水引起的地下连续墙侧移研究[J]. 岩土工程学报, 2013, 35 (12): 2153- 2163
ZHENG Gang, ZENG Chao-feng Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (12): 2153- 2163
[18]   LIM A, OU C Y Performance and three-dimensional analyses of a wide excavation in soft soil with strut-free retaining system[J]. International Journal of Geomechanics, 2018, 18 (9): 05018007
doi: 10.1061/(ASCE)GM.1943-5622.0001165
[19]   TAN Y, WEI B Observed behaviors of a long and deep excavation constructed by cut-and-cover technique in shanghai soft clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138 (1): 69- 88
doi: 10.1061/(ASCE)GT.1943-5606.0000553
[20]   HSIEH P G, OU C Y, HSIEH W H Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall[J]. Acta Geotechnica, 2016, 11 (5): 1087- 1102
doi: 10.1007/s11440-015-0416-6
[21]   LIM A, HSIEH P G, OU C Y Evaluation of buttress wall shapes to limit movements induced by deep excavation[J]. Computers and Geotechnics, 2016, 78: 155- 170
doi: 10.1016/j.compgeo.2016.05.012
[22]   HSIEH P G, OU C Y Mechanism of buttress walls in restraining the wall deflection caused by deep excavation[J]. Tunnelling and Underground Space Technology, 2018, 82: 542- 553
doi: 10.1016/j.tust.2018.09.004
[23]   曾超峰, 王硕, 宋伟炜, 等 内隔墙对开挖前抽水引发软土区地铁深基坑变形的控制效果[J]. 岩石力学与工程学报, 2021, 40 (6): 1277- 1286
ZENG Chao-feng, WANG Shuo, SONG Wei-wei, et al Control effect of cross wall on the metro foundation pit deformation induced by pre-excavation dewatering in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (6): 1277- 1286
[1] Ao ZHOU,Bin WANG,Jie-tao LI,Xin ZHOU,Wen-jun XIA. Long-term stability analysis and deformation prediction of soft soil foundation pit in Taihu Tunnel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 692-701.
[2] DING Zhi, WANG Fan-yong, WEI Xin-jiang. Prediction and analysis of surface deformation caused by twin shield construction in soft soil[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 61-68.
[3] WU Ya-jun, GU Sai-shuai, QIANG Xiao-bing, HUANG Wei-jun, LU Li-hai, LUO Jia-cheng. Experimental study on ultra-soft soil reinforced by vacuum preloading with flocculation based on skeleton construction[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 735-743.
[4] TAN Yong, KANG Zhi jun, WEI Bin, DENG Gang. Case study on deep excavation for metro ventilation shaft in Shanghai soft clay[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(6): 1048-1055.
[5] LI Xue-gang, XU Ri-qing, WANG Xing-chen, RONG Xue-ning. Assessment of engineering properties for marine and lacustrine soft soil in Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1346-1352.
[6] XIE Xin-yu, LI Jin-zhu, WANG Wen-jun, LIU Kai-fu, ZHU Xiang-rong. Rheological test and empirical model of Ningbo soft soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(1): 64-71.
[7] LI Jin-Zhu, SHU Xiang-Rong, LIU Yong-Hai. Elastoplastic damage constitutive model and its application to
structural soft soil
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(4): 806-811.
[8] ZHANG Xue-Chan, Zhang-Jie, GONG Xiao-Na, YIN Xu-Yuan. Regional property of confined aquifer in typical cities[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(10): 1998-2004.