Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (3): 562-572    DOI: 10.3785/j.issn.1008-973X.2023.03.014
    
Experimental study on thermo-mechanical properties of geothermal energy pile considering intermittent ratio
Chun-yang LIU1(),Peng-fei FANG2,3,*(),Ri-hong ZHANG4,Xin-yu XIE1,Yang LOU1,Qiu-shan ZHANG2,3,Da-yong ZHU2,3
1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
2. NingboTech University, Ningbo 315100, China
3. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
4. ZCONE High-Tech Pile Industry Holdings Limited Company, Ningbo 315145, China
Download: HTML     PDF(1635KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Combined with the field test of geothermal energy pile, the strain/temperature sensors were embedded in the pile body to monitor the inlet/outlet water temperature, the temperature of the pile body and the axial strain. A variation law of the additional axial thermal stress and the additional frictional resistance of the pile under different intermittent ratios was analyzed, the heat transfer performance and thermo-mechanical properties of geothermal energy piles in intermittent and continuous modes were compared. Test results showed that the effect of intermittent ratio on short-term heat transfer performance of geothermal energy piles was greater than that on long-term heat transfer performance.When the intermittent ratio was 1 and 2, The average values of performance coefficient was 3.95 and 4.00, and the average heat transfer per meter of the pile body was 101.2 and 107.3 W/m, respectively. The intermittent ratio had a significant effect on the pile body temperature, and the average temperature increment of the pile body with the intermittent ration of 1 was 66% higher than that with the intermittent ration of 2. The axial observed strain in the middle of the pile body was greater than that at the two ends of the pile, and the additional axial thermal stress and the additional frictional resistance of the pile decreased with the increase of the intermittent ratio. During the recovery stage of pile temperature, the pile temperature, axial observed strain and additional axial thermal stress under intermittent ratio of 1 and 2 were all residual.



Key wordsintermittent ratio      geothermal energy pile      multiple temperature cycle      heat transfer performance      thermo-mechanical response      field test     
Received: 06 March 2022      Published: 31 March 2023
CLC:  TU 473  
Fund:  国家自然科学基金资助项目(51708496);浙江省自然科学基金资助项目(LY16E080010);宁波市自然科学基金资助项目(2021J169)
Corresponding Authors: Peng-fei FANG     E-mail: 21912192@zju.edu.cn;fpf@nit.zju.edu.cn
Cite this article:

Chun-yang LIU,Peng-fei FANG,Ri-hong ZHANG,Xin-yu XIE,Yang LOU,Qiu-shan ZHANG,Da-yong ZHU. Experimental study on thermo-mechanical properties of geothermal energy pile considering intermittent ratio. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 562-572.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.03.014     OR     https://www.zjujournals.com/eng/Y2023/V57/I3/562


考虑间歇比的地热能源桩热-力性能试验研究

结合地热能源桩现场试验,在桩身内部埋设应变/温度传感器,监测进/出口水温、桩身温度和轴向应变. 分析不同间歇比下桩身轴向附加温度应力与桩侧附加摩阻力的变化规律,比较间歇与连续模式下地热能源桩的传热性能与热-力学特性. 试验结果表明,间歇比对地热能源桩的短期传热性能影响比长期传热性能影响大. 当间歇比为1、2时,性能系数平均值分别为3.95、4.00,桩身每延米换热量平均值分别为101.2 、107.3 W/m. 间歇比对桩身温度影响较明显,间歇比为1的桩身平均温度增量比间歇比为2的高66%. 桩身中部的轴向观测应变大于桩两端的,桩身轴向附加温度应力和桩侧附加摩阻力均随间歇比的增大而减小. 在桩身温度恢复阶段,间歇比为1、2工况的桩身温度,轴向观测应变和轴向附加温度应力均有残余.


关键词: 间歇比,  地热能源桩,  多次温度循环,  换热性能,  热-力学响应,  现场试验 
土层类型 hs/ m γ/ (kN·m?3) ww/ % λ/ (W·m?1·K?1) c /(J·kg?1·K?1) Es/ MPa c1/ kPa φ/ (°)
淤泥质黏土 0~8 17.2 51.0 1.11 1 840 2.28 10.4 8.3
黏土 8~15 19.0 32.7 1.26 1 670 6.99 37.8 16.9
粉质黏土 15~20 18.8 33.5 1.43 1 620 4.46 24.4 14.2
粉质黏土 20~37 18.7 34.9 1.44 1 620 4.41 19.8 13.3
黏土 37~45 18.3 37.9 1.52 1 730 5.28 24.3 13.3
粉质黏土 45~52 19.1 31.9 1.63 1 620 6.65 26.7 16.9
粉质黏土 52~57 19.2 30.4 1.71 1 620 8.28 42.0 16.8
粉质黏土 57~60 19.4 30.0 1.74 1 620 8.22 42.9 17.0
Tab.1 Physical-mechanical and thermo-physical parameters of soil
Fig.1 Distribution of gauges in geothermal energy pile
n to/ h 运行时间 tc / h tr / d ts / d
1 12 8:00~20:00 12 23 27
2 8 8:00~16:00 16 23 27
Tab.2 On-site thermo-mechanical coupling test plan
Fig.2 Inlet/outlet temperature of heat exchange tube with time in intermittent mode
Fig.3 Heat transfer performance of geothermal energy piles with time
Fig.4 Temperature distributions of geothermal energy pile with time
Fig.5 Temperature increment distributions of geothermal energy pile along depth
Fig.6 Observed strain distribution of geothermal energy pile along depth
Fig.7 Additional axial thermal stress of geothermal energy pile along depth
Fig.8 Additional axial thermal stress of geothermal energy pile with temperature
项目 桩型 L /m 约束情况 土层 E/GPa 模式 Δθmax/
αθmax/
(kPa·℃?1)
αθp/
(kPa·℃?1)
αθe/
(kPa·℃?1)
γp/ % γe/ %
文献[13]、[14] 钻孔灌注桩 25.8 建筑约束 软土/砂砾/
软砂岩
29.2 连续 18 292 150 79 51.7 27.1
文献[23] 钻孔灌注桩 24.0 自由 粉质黏土/
黏土
30 连续 14.5 309 73 170 23.6 55.0
文献[22] PHC桩 24.0 自由 淤泥质黏土/
粉质黏土
45.7 连续 20 530 110 186 20.7 35.1
本研究 静钻根植桩 52.0 建筑约束 表1 38 n=1 11.0 380 328 205 86.3 53.4
本研究 静钻根植桩 52.0 建筑约束 表1 38 n=2 8.2 380 343 231 90.3 60.8
Tab.3 In-situ test results of several geothermal energy piles
Fig.9 Additional frictional resistance of geothermal energy pile along depth
[1]   中国建筑能耗研究报告2020[J]. 建筑节能(中英文), 2021, 49(2): 1-6.
China building energy consumption annual report 2020 [J]. Building Energy Efficiency, 2021, 49(2): 1-6.
[2]   栾英波, 郑桂森, 卫万顺 浅层地温能资源开发利用发展综述[J]. 地质与勘探, 2013, 49 (2): 379- 383
LUAN Ying-bo, ZHENG Gui-sen, WEI Wan-shun Review of the shallow geothermal energy resources development and utilization[J]. Geology and Exploration, 2013, 49 (2): 379- 383
[3]   BRANDL H Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56 (2): 81- 122
[4]   王佳玉, 周德源, 薇薇安·洛夫特尼斯 绿色建筑暖通空调方案——能源桩系统及其发展综述[J]. 生态城市与绿色建筑, 2012, (1): 50- 55
WANG Jia-yu, ZHOU De-yuan, LOFTNESS Vivian Green HVAC technology: the development of energy piles[J]. Eco-City and Green Building, 2012, (1): 50- 55
[5]   刘汉龙, 孔纲强, 吴宏伟 能量桩工程应用研究进展及 PCC 能量桩技术开发[J]. 岩土工程学报, 2014, 36 (1): 176- 181
LIU Han-long, KONG Gang-qiang, CHARLES W W Ng Applications of energy piles and technical development of PCC energy piles[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (1): 176- 181
doi: 10.11779/CJGE201401018
[6]   江强强, 焦玉勇, 骆进, 等 能源桩传热与承载特性研究现状及展望[J]. 岩土力学, 2019, 40 (9): 3351- 3362
JIANG Qiang-qiang, JIAO Yu-yong, LUO Jin, et al Review and prospect on heat transfer and bearing performance of energy piles[J]. Rock and Soil Mechanics, 2019, 40 (9): 3351- 3362
[7]   杨靓, 刘松玉 能源桩的应用与发展[J]. 建筑科学, 2014, 30 (Suppl.2): 321- 327
YANG Liang, LIU Song-yu Application and development of energy piles[J]. Building Science, 2014, 30 (Suppl.2): 321- 327
[8]   黄旭, 孔纲强, 刘汉龙, 等 夏季制冷循环下PCC能量桩负摩阻力特性研究[J]. 防灾减灾工程学报, 2017, 37 (4): 511- 517
HUANG Xu, KONG Gang-qiang, LIU Han-long, et al Negative skin friction behavior of PCC energy pile under hearting cycle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2017, 37 (4): 511- 517
[9]   王成龙, 刘汉龙, 孔纲强, 等 不同刚度约束对能量桩应力和位移的影响研究[J]. 岩土力学, 2018, 39 (11): 4261- 4268
WANG Cheng-long, LIU Han-long, KONG Gang-qiang, et al Study on stress and displacement of energy pile influenced by pile tip stiffness[J]. Rock and Soil Mechanics, 2018, 39 (11): 4261- 4268
doi: 10.16285/j.rsm.2017.0352
[10]   孔纲强, 王成龙, 刘汉龙, 等 多次温度循环对能量桩桩顶位移影响分析[J]. 岩土力学, 2017, 38 (4): 958- 964
KONG Gang-qiang, WANG Cheng-long, LIU Han-long, et al Analysis of pile head displacement of energy pile under repeated temperature cycling[J]. Rock and Soil Mechanics, 2017, 38 (4): 958- 964
[11]   蒋刚, 李仁飞, 王昊, 等 摩擦型能源桩热−力耦合全过程承载性能分析[J]. 岩石力学与工程学报, 2019, 38 (12): 2525- 2534
JIANG Gang, LI Ren-fei, WANG Hao, et al Numerical analysis of bearing capacity of floating energy pile during full process of thermal-mechanical coupling[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2525- 2534
[12]   王忠瑾, 张日红, 王奎华, 等 能源载体条件下静钻根植桩承载特性[J]. 浙江大学学报: 工学版, 2019, 53 (1): 11- 18
WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, et al Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (1): 11- 18
[13]   LALOUI L, NUTH M, VULLIET L Experimental and numerical investigations of the behavior of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30 (8): 763- 781
doi: 10.1002/nag.499
[14]   LALOUI L, DONNA A D Understanding the thermal- mechanical behaviour of energy piles[J]. Civil Engineering, 2011, 164 (6): 503- 519
[15]   BOURNE-WEBB P J, AMATYA B, SOGA K, et al Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles[J]. Géotechnique, 2009, 59 (3): 237- 248
[16]   BOURNE-WEBB P J, AMATYA B, SOGA K A framework for understanding energy pile behaviour[J]. Geotechnical Engineering, 2013, 166 (2): 170- 177
[17]   桂树强, 程晓辉 能源桩换热过程中结构响应原位试验研究[J]. 岩土工程学报, 2014, 36 (6): 1087- 1094
GUI Shu-qiang, CHENG Xiao-hui In-situ test for structural responses of energy pile to heat exchanging process[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (6): 1087- 1094
doi: 10.11779/CJGE201406014
[18]   MURPHY K D, MCCARTNEY J S, HENRY K S Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations[J]. Acta Geotechnica, 2015, 10: 179- 195
doi: 10.1007/s11440-013-0298-4
[19]   MURPHY K D, MCCARTNEY J S Seasonal response f energy foundations during building operation[J]. Geotechnical and Geological Engineering, 2015, 33: 343- 356
doi: 10.1007/s10706-014-9802-3
[20]   YOU S, CHENG X, GUO H, et al Experimental study on structural response of CFG energy piles[J]. Applied Thermal Engineering, 2016, 96: 640- 651
doi: 10.1016/j.applthermaleng.2015.11.127
[21]   路宏伟, 蒋刚, 王昊, 等 摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J]. 岩土工程学报, 2017, 39 (2): 334- 342
LU Hong-wei, JIANG Gang, WANG Hao, et al In-situ tests and thermo-mechanical bearing characteristics of friction geothermal energy piles[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (2): 334- 342
doi: 10.11779/CJGE201702018
[22]   郭易木, 钟鑫, 刘松玉, 等 自由约束条件下分层地基中PHC能源桩热力响应原型试验研究[J]. 岩石力学与工程学报, 2019, 38 (3): 582- 590
GUO Yi-mu, ZHONG Xin, LIU Song-yu, et al Prototype experimental investigation on the thermo-mechanical behaviors of free constrained full-scale PHC energy piles in multi-layer strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (3): 582- 590
doi: 10.13722/j.cnki.jrme.2018.1073
[23]   孔纲强, 吕志祥, 孙智文, 等. 黏性土地基中摩擦型能量桩现场热响应试验[J]. 中国公路学报, 2021, 34(3): 95-102.
KONG Gang-qiang, LYU Zhi-xiang, SUN Zhi-wen, et al. Thermal response testing on friction energy piles embedded in clay [J] China Journal of Highway and Transport, 2021, 34(3): 95-102.
[24]   FAIZAL M, BOUAZZA A, SINGH R M An experimental investigation of the influence of intermittent and continuous operating modes on the thermal behaviour of a full scale geothermal energy pile[J]. Geomechanics for Energy and the Environment, 2016, 8: 8- 29
doi: 10.1016/j.gete.2016.08.001
[25]   任连伟, 徐健, 孔纲强, 等 冬季工况多次温度循环下微型钢管桩群桩热力响应特性现场试验[J]. 岩土工程学报, 2019, 41 (11): 2053- 2060
REN Lian-wei, XU Jian, KONG Gang-qiang, et al Field tests on thermal response characteristics of micro steel pile group under multiple temperature cycles in winter conditions[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (11): 2053- 2060
[26]   娄扬. 外置双U型静钻根植工法地热能源桩热–力学特性研究 [D]. 重庆: 重庆交通大学, 2019.
LOU Yang. Study on thermo-mechanical behaviour of static drill rooted geothermal energy piles with external double U-tubes [D]. Chongqing: Chongqing Jiaotong University, 2019.
[27]   李彦儒, 刘秦见, 孟曦, 等 居住与办公建筑空调间歇运行典型模式调查研究[J]. 建筑技术开发, 2016, 43 (4): 8- 11
LI Yan-ru, LIU Qin-jian, MENG Xi, et al Survey research intermittent air conditioning operation typical of residential building and office building[J]. Building Technology Development, 2016, 43 (4): 8- 11
[28]   中华人民共和国住房和城乡建设部. 民用建筑供暖通风与空气调节设计规范: GB 50736—2012 [S]. 北京: 中国建筑工业出版社, 2012.
[29]   周佳锦, 龚晓南, 王奎华, 等 静钻根植竹节桩抗压承载性能[J]. 浙江大学学报: 工学版, 2014, 48 (5): 835- 842
ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al Performance of static drill rooted nodular piles under compression[J]. Journal of Zhejiang University: Engineering Science, 2014, 48 (5): 835- 842
[30]   周佳锦, 王奎华, 龚晓南, 等 静钻根植竹节桩桩端承载性能试验研究[J]. 岩土力学, 2016, 37 (9): 2603- 2609
ZHOU Jia-jin, WANG Kui-hua, GONG Xiao-nan, et al A test on base bearing capacity of static drill rooted nodular pile[J]. Rock and Soil Mechanics, 2016, 37 (9): 2603- 2609
doi: 10.16285/j.rsm.2016.09.023
[31]   SINGH R M, BOUAZZA A, WANG B Near-field ground thermal response to heating of a geothermal energy pile: observations from a field test[J]. Soils and Foundations, 2015, 55 (6): 1412- 1426
doi: 10.1016/j.sandf.2015.10.007
[32]   方鹏飞, 高翔, 娄扬, 等 夏季工况下正常服役地热能源桩承载性能原位试验研究[J]. 岩石力学与工程学报, 2021, 40 (5): 1032- 1042
FANG Peng-fei, GAO Xiang, LOU Yang, et al Field test on the bearing behaviors of geothermal energy piles in natural service under the summer condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40 (5): 1032- 1042
doi: 10.13722/j.cnki.jrme.2020.0858
[1] Guo-peng LYU,Nan JIANG,Chuan-bo ZHOU,Hai-bo LI,Ying-kang YAO,Xu ZHANG. Surface explosion induced crack extension mechanism of reinforced concrete pipeline[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1704-1713.
[2] Zhong-nan LI,Hai-bo ZHU,Yang ZHAO,Xue LUO,Rong-qiao XU. Thermal stress analysis and crack control of assembled bridge pier[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 46-54.
[3] Si XIAO,Kui-hua WANG,Meng-bo WANG. Vertical dynamic response of pile-soil plug based on surrounding fictitious soil pile model[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1593-1603.
[4] Yu-qi ZHANG,Nan JIANG,Yong-sheng JIA,Chuan-bo ZHOU,Xue-dong LUO,Ting-yao WU. Blasting vibration characteristics of high-density polyethylene pipes in operation water-filled state[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2120-2127.
[5] WANG Cheng quan, SHEN Yong gang, WANG Gang, XIE Xu. Field tests on mechanical characteristic of link slab on hollow-cored slab beam bridge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1438-1445.
[6] SHEN Guo hui, YAO Dan, YU Shi ce, LOU Wen juan, XING Yue long, PAN Feng. Wind tunnel test of wind field characteristics on isolated hill and two adjacent hills[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 805-812.
[7] ZHAN Liang-tong, XU Hui, LAN Ji-wu, LIU Zhao, CHEN Yun-min. Field and laboratory study on hydraulic characteristics of MSWs[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(3): 478-486.
[8] YAN Wei-guo, YU Xiao-li, LU Guo-dong, ZHOU Jian-wei. Heat transfer and pressure drop of heat pipe heat exchanger[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 132-135.