Please wait a minute...
J4  2014, Vol. 48 Issue (3): 478-486    DOI: 10.3785/j.issn.1008-973X.2014.03.015
    
Field and laboratory study on hydraulic characteristics of MSWs
ZHAN Liang-tong1, XU Hui1, LAN Ji-wu1, LIU Zhao1,2, CHEN Yun-min1 
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China;
2. Beilun Urban Management Bureau, Ningbo 315899, China
Download:   PDF(2650KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Hydraulic property of municipal solid wastes (MSWs) is one of the key parameters that influence leachate flows within landfills. The hydraulic conductivity of MSWs in Qizishan Landfill was measured in both laboratory and field tests. The following conclusions were drawn: (1) The results from the pumping tests show an influence radius of vertical well between 25-33 m, a flow rate 14.4-26.9 m3/d for single well, and a hydraulic conductivity of 2.4×10-6 -5.5×10-6 m/s for the wastes buried at the depths of 15.5-17.5 m; (2) The laboratory test results demonstrate that the effective stress  influences the hydraulic conductivity most significantly among all factors, and the measured hydraulic conductivity is between 1.4×10-7-5.5×10-6 m/s at the depths of 2.5-17.5 m; (3) Both laboratory and field study demonstrates a decreasing trend of hydraulic conductivity with an increase in the burial depth of wastes; (4) The hydraulic conductivity obtained from the field tests is 15-25 times higher than that from the lab tests,  due to the anisotropy and preferential flow existing in the landfill body. Thus, reasonable well structure and above-mentioned hydraulic characteristics of MSWs should be taken into consideration in the design of drainage and drawdown system for landfills with high leachate mound.



Published: 10 June 2018
CLC:  TV 139.1  
Cite this article:

ZHAN Liang-tong, XU Hui, LAN Ji-wu, LIU Zhao, CHEN Yun-min. Field and laboratory study on hydraulic characteristics of MSWs. J4, 2014, 48(3): 478-486.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.03.015     OR     http://www.zjujournals.com/eng/Y2014/V48/I3/478


填埋垃圾渗透特性室内外测试研究

以苏州市七子山生活垃圾卫生填埋场为工程背景,开展了填埋垃圾渗透系数现场和室内测定试验,现场试验结果表明:垃圾填埋体中抽水井抽水影响半径为25~33 m,单井产流量为14.4~26.9 m3/d,15.5~17.5 m埋深范围内垃圾渗透系数介于2.4×10-6~5.5×10-6 m/s之间;室内试验结果表明:有效应力是影响填埋垃圾渗透系数的关键因素,2.5~17.5 m埋深范围内垃圾渗透系数介于1.4×10-7~5.5×10-6 m/s之间;上述2种试验结果均表明,垃圾渗透系数随埋深的增大呈显著减小趋势;由于垃圾堆体中各向异性和优势流现象的存在,相同深度渗透系数现场与室内测试结果比值为15~25.建议在高渗滤液水位的填埋场进行竖井降水方案和导排系统的设计时,在选择合理的竖井结构的同时,考虑填埋垃圾渗透性能的特征.

[1] SOWERS G F. Introductory Soil Mechanics and Foundations: Geotechnical Engineering [M]. New York: Macmillan Publishing Co., Inc., 1979.
[2] SHANK K L. Determination of the hydraulic conductivity of the Alachua County southwest landfill [D]. Gainesville, Fla: University of Florida, 1993.
[3] REDDY K R, HETTIARACHCHI H,PARAKALLA N, et al. Hydraulic conductivity of MSW in landfills [J]. Journal of Environmental Engineering, 2009, 135(8):677-683.
[4] 瞿贤, 何品晶, 邵立明, 等. 城市生活垃圾渗透系数测试研究 [J]. 环境污染治理技术与设备, 2005, 6(12): 13-17.
QU Xian, HE Pin-jing, SHAO Li-ming, et al. Research on hydraulic conductivity test of compacted municipal solid waste [J]. Techniques and Equipment for Environmental Pollution Control, 2005, 6(12): 13-17.
[5] 柯瀚, 冉龙, 陈云敏, 等. 垃圾体渗透性试验及填埋场水文分析研究 [J]. 岩土工程学报, 2006, 28(5): 631-634.
KE Han, RAN Long, CHEN Yun-min, et al. Study on MSW filtration experimentation and landfill hydrologic analysis [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(5): 631-634.
[6] 介玉新, 旦增顿珠, 魏弋峰. 垃圾土的渗透特性试验 [J]. 岩土工程技术, 2005, 19(6):307-310.
JIE Yu-xin, DANZENG Dun-zhu, WEI Yi-feng. Study on the permeability of municipal solid waste [J]. Geotechnical Engineering Technique, 2005, 19(6): 307 310.
[7] 刘辉, 黄涛, 张驰. 主压缩沉降阶段垃圾填埋体渗透特性研究 [J]. 环境科学, 2009, 30(12):3729-3733.
LIU Hui, HUANG Tao, ZHANG Chi. Research on permeability of landfills body in primary compression [J]. Environmental Science, 2009, 30(12):3729-3733.
[8] CHEN T H, CHYNOWETH D P. Hydraulic conductivity of compacted municipal solid waste [J]. Bioresource Technology, 1995, 51(2):205212.
[9] POWRIE W, BEAVEN R P. Hydraulic properties of household waste and implications for landfills [J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 1999, 137(4):235-247.
[10] BLEIKER D E, FARQUHAR G, MCBEAN E. Landfill settlement and the impact on site capacity and refuse hydraulic conductivity [J]. Waste Management & Research, 1995, 13(6):533-554.
[11] HOSSAIN M S, PENMETHSA K K, HOYOS L. Permeability of municipal solid waste in bioreactor landfill with degradation [J]. Geotechnical and Geological Engineering, 2009, 27(1):43-51.
[12] STAUB M, GALIETTI B, OXARANGO L, et al. Porosity and hydraulic conductivity of MSW using laboratory-scale tests [C]∥Third International Workshop “Hydro- Physico-Mechanics of Landfills”. Braunschweig, Germany:[s.n.], 2009.
[13] 张文杰, 陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. 岩土力学, 2010, 31(1):210-215.
ZHANG Wen-jie, CHEN Yun-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. Rock and Soil Mechanics, 2010, 31(1):210-215.
[14] 水利部水利水电规划设计管理局. SL320-2005 水利水电工程钻孔抽水试验规程[S]. 北京: 中国水利水电出版社, 2005.
Planning and Design Administration of Water Resources and Hydropower, MWR. SL320-2005 Borehole pumping test procedures for water resources and hydropower engineering[S]. Beijing: China Water Power Press, 2005.
[15] 陈崇希, 林敏.地下水动力学[M].武汉:中国地质大学出版社,1999: 59-64.
[16] OWEIS I S, SMITH D A, ELLWOOD R B, et al. Hydraulic characteristics of municipal refuse [J]. Journal of Geotechnical Engineering, 1990, 116(4):539-553.
[17] BEAVEN R P. The hydrogeological and geotechnical properties of household waste in relation to sustainable landfilling[D]. London: Queen Mary and Westfield College, University of London, 2000.
[18] ETTALA M. Infiltration and hydraulic conductivity at a sanitary landfill [J]. Aqua Fennica, 1987, 17(2):231-237.
[19] LANDVA A O, KNOWLES G D. Geotechnics of waste fills: theory and practice [M]. [S.l.]:ASTM International,1990.
[20] JANG Y S, KIM S S, CHO Y J. Flow in a municipal waste landfill with daily cover soil of low hydraulic conductivity [C]∥Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon:[s.n.], 1998.
[21] OLIVIER F, OXARANGO L, MUGNIER V, et al. Estimating the drawdown of leachate in a saturated landfill: 3D modeling based on field pumping tests [C]∥ Twelfth International Waste Management and Landfill Symposium. Cagliari, Italy:[s.n.],2009.
[22] CHEN Y M, ZHAN L T, WEI H Y, et al. Aging and compressibility of municipal solid wastes [J]. Waste Management, 2009, 29(1):86-95.
[23] ZEKKOS D, BRAY J D, KAVAZANJIAN E Jr, et al. Unit weight of municipal solid waste [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (10): 1250-1261.
[24] POWRIE W, HUDSON A P, BEAVEN R P. Development of sustainable landfill practices and engineering landfill technology [R]. Highfield, Southampton:University of Southampton,2000.
[25] LANDVA A O, PELKEY S G, VALSANGKAR A J. Coefficient of permeability of municipal refuse [C]∥ Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon:[s.n.], 1998:63-68.
[26] BUCHANAN D,CLARK C F. The impact of waste processing on the hydraulic behaviour of landfilled wastes[R]. Glasow,UK:University of Strathclyde,1997.
[27] BUCHANAN D, CLARK C F, FERGUSON N S, et al. Hydraulic characteristics of wet-pulverised municipal waste [J]. Water and Environment Journal, 2001, 15(1):14-20.
[28] ZEISS C, MAJOR W. Moisture flow through municipal solid waste: patterns and characteristics [J]. Journal of Environmental Systems, 1992, 22(3):211-231.

[1] HU Yun-jin, HE Chun-lei, ZHU Xi-bing, WANG Guo-qing. Analysis of effect factors on seawall seepage deformation[J]. J4, 2011, 45(6): 1113-1118.
[2] LUO Yu-Long, SU Bao-Yu. Piping control effect of suspended cut-off wall based on solute transport[J]. J4, 2010, 44(10): 1870-1875.