Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 805-813    DOI: 10.3785/j.issn.1008-973X.2023.04.018
    
Optimization of ultrasonic tomography technology for concrete pile foundation
Ke WANG(),Jun-tao WU*(),Zhe YU,Chi-xuan XIANG,Kui-hua WANG
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(2004KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The field source-point encryption technique based on the layout of the transducers, the scheme of reverse virtual ray path pair of omitting-receiving transducers, the improved SIRT algorithm considering the whole field correction, and the computed tomographic image post-processing technology, etc., were proposed respectively to improve the ultrasonic tomography effect of the RC pile foundations in view of the test characteristics of reinforced concrete (RC) pile foundation that the vertical dimension of cross-section area between two acoustic tubes is significantly larger than that of the horizontal dimension and the transducer spacing is relatively sparse. The ultrasonic tomography omitting and receiving transducer signals under different working conditions were simulated by using the finite element analysis software ABAQUS. Condition parameters that affect imaging effects were analyzed. Results show that it is quicker and more accurate to locate and quantify the potential defect among the cross-section area between two acoustic tubes by employing the proposed algorithms. The calculation reliability of the algorithm is high.



Key wordsultrasonic wave      tomography      source-point tracing      inversion algorithm      wavelet analysis     
Received: 12 June 2022      Published: 21 April 2023
CLC:  TU 437  
Fund:  国家自然科学基金资助项目(52178358,52108349);浙江省自然科学基金资助项目(LXZ22E080001)
Corresponding Authors: Jun-tao WU     E-mail: wangke-1001@163.com;wujuntao31@126.com
Cite this article:

Ke WANG,Jun-tao WU,Zhe YU,Chi-xuan XIANG,Kui-hua WANG. Optimization of ultrasonic tomography technology for concrete pile foundation. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 805-813.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.018     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/805


混凝土基桩超声波层析成像技术优化

针对混凝土基桩超声波层析成像技术中两声测管间剖面区域的竖向尺寸远大于水平尺寸、换能器布置间距相对稀疏的测试特征,提出基于换能器布置尺寸加密的场源点分布形式、发-收端互换虚拟射线组、考虑完整场修正的改进SIRT算法及层析成像后处理技术等优化方法,对基桩超声波层析成像效果进行提升. 利用有限元分析软件ABAQUS,对不同工况条件下的超声波层析成像发射、接收换能器信号进行数值模拟,分析影响成像效果的工况参数. 研究结果表明,采用优化后的层析成像反演算法可以更加快速、准确地定位以及量化声测管间剖面区域内的潜在质量缺陷,具有较高的计算可靠性.


关键词: 超声波,  层析成像,  波源点追踪,  反演算法,  小波分析 
Fig.1 Schematic of field source-point distribution based on transducer layout size densification
Fig.2 Positional relationship between source point and sub-level source point
Fig.3 Schematic of calculated ray path in homogeneous medium field using Dijkstra algorithm
Fig.4 Schematic of two-level decomposition structure of image wavelet
Fig.5 Ultrasonic tomography (four-level decomposition and reconstruction using db7 wavelet)
Fig.6 Image of modified relative value of wave velocity (four-level decomposition and reconstruction using db7 wavelet)
Fig.7 Numerical simulation of ultrasonic testing of pile foundation
Fig.8 Influence of 8-node sub-level source points adjacent to source point on tomography image
Fig.9 Influence of 16-node sub-level source points adjacent to source point on tomography image
Fig.10 Original ultrasonic tomography and image of modified relative value of wave velocity(Lv = 4.00 m,nrc = 10)
Fig.11 Original ultrasonic tomography and image of modified relative value of wave velocity (Lv = 4.00 m,nrc = 20)
Fig.12 Original ultrasonic tomography and image of modified relative value of wave velocity(βe = 1)
Fig.13 Original ultrasonic tomography and image of modified relative value of wave velocity(βe = 5)
Fig.14 Original ultrasonic tomography and image of modified relative value of wave velocity(rd = 0.10 m,rx = 0.00 m,ry = 0.00 m)
Fig.15 Original ultrasonic tomography and image of modified relative value of wave velocity (rd = 0.20 m,rx = 0.00 m,ry = 0.00 m,vd = 3000 m/s)
[2]   王奎华, 谢康和, 曾国熙 变截面阻抗桩受迫振动问题解析解及 应用[J]. 土木工程学报, 1998, 31 (6): 56- 67
WANG Kui-hua, XIE Kang-he, ZENG Guo-xi An analytical solution to force vibration of foundation pile under exciting force and its application[J]. China Civil Engineering Journal, 1998, 31 (6): 56- 67
[3]   吴君涛, 王奎华, 高柳, 等 考虑桩身材料阻尼的桩基纵向振动 积分变换解及其应用[J]. 岩石力学与工程学报, 2017, 36 (9): 2305- 2312
WU Jun-tao, WANG Kui-hua, GAO Liu, et al Study on longitudinal vibration of a viscoelastic pile by integral transformation and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2305- 2312
[4]   WU J, WANG K, GAO L, et al Study on longitudinal vibration of a pile with variable sectional acoustic impedance by integral transformation[J]. Acta Geotechnica, 2019, 14 (6): 1857- 1870
doi: 10.1007/s11440-018-0732-8
[5]   DAVIS A Nondestructive evaluation of existing deep foundations[J]. Journal of Performance of Constructed Facilities, 1995, 9 (1): 57- 74
doi: 10.1061/(ASCE)0887-3828(1995)9:1(57)
[6]   黄大治, 陈龙珠 旁孔透射波法检测水泥搅拌桩的三维有限元 分析[J]. 上海交通大学学报, 2007, 41 (6): 960- 964
HUANG Da-zhi, CHEN Long-zhu 3D finite element analysis of parallel seismic method for integrity of cemented soil columns[J]. Journal of Shanghai Jiaotong University, 2007, 41 (6): 960- 964
doi: 10.3321/j.issn:1006-2467.2007.06.023
[7]   陈龙珠, 赵荣欣 旁孔透射波法确定桩底深度计算方法评价[J]. 地下空间与工程学报, 2010, 6 (1): 157- 161
CHEN Long-zhu, ZHAO Rong-xin On determination of pile length with parallel seismic testing for existing structure[J]. Chinese Journal of Underground Space and Engineering, 2010, 6 (1): 157- 161
doi: 10.3969/j.issn.1673-0836.2010.01.029
[8]   吴君涛, 王奎华, 肖偲, 等 弹性支承桩周围土振动响应解析解 及其波动规律研究[J]. 岩石力学与工程学报, 2018, 37 (10): 2384- 2393
WU Jun-tao, WANG Kui-hua, XIAO Si, et al The analytical solution of soil around elastic bearing pile and its dynamic law studies[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (10): 2384- 2393
[9]   WU J, WANG K, EL NAGGAR M Dynamic soil reactions around pile-fictitious soil pile coupled model and its application in parallel seismic method[J]. Computers and Geotechnics, 2019, 110 (6): 44- 56
[10]   WU J, EL NAGGAR M, WANG K Analytical model for laterally loaded soil-extended pile shaft applied to verifying the applicability of lateral PS method[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147 (10): 04021103
doi: 10.1061/(ASCE)GT.1943-5606.0002636
[11]   CHERNAUSKAS L, PAIKOWSKY S. Defect detection and examination of large drilled shafts using a new cross-hole sonic logging system [C]// Performance Confirmation of Constructed Geotechnical Facilities. Amherst: ASCE, 2000.
[1]   王奎华, 谢康和, 曾国熙 有限长桩受迫振动问题解析解及其应 用[J]. 岩土工程学报, 1997, 19 (6): 27- 35
WANG Kui-hua, XIE Kang-he, ZENG Guo-xi Analytical solution to vibration of finite length pile under exciting force and its application[J]. Chinese Journal of Geotechnical Engineering, 1997, 19 (6): 27- 35
doi: 10.3321/j.issn:1000-4548.1997.06.007
[12]   LI D, ZHANG L, TANG W Reliability evaluation of cross-hole sonic logging for bored pile integrity[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131 (9): 1130- 1138
doi: 10.1061/(ASCE)1090-0241(2005)131:9(1130)
[13]   WHITE B, NAGY M, ALLIN R. Comparing cross-hole sonic logging and low-strain integrity testing results [C]// Proceedings of the 8th International Conference on the Application of Stress Wave Theory to Piles. Lisbon: IOS Press, 2008.
[14]   张杰, 沈霄云, 刘明贵 智能化桩基超声波CT检测系统研究[J]. 岩土力学, 2009, 30 (4): 1197- 1200
ZHANG Jie, SHEN Xiao-yun, LIU Ming-gui Study of intelligent pile ultrasonic CT testing system[J]. Rock and Soil Mechanics, 2009, 30 (4): 1197- 1200
doi: 10.3969/j.issn.1000-7598.2009.04.059
[15]   张建中, 陈世军, 余大祥 最短路径射线追踪方法及其改进[J]. 地球物理学进展, 2003, 18 (1): 146- 150
ZHANG Jian-zhong, CHEN Shi-jun, YU Da-xiang Improvement of shortest path ray tracing method[J]. Progress in Geophysics, 2003, 18 (1): 146- 150
doi: 10.3969/j.issn.1004-2903.2003.01.025
[16]   张美根, 程冰洁, 李小凡, 等 一种最短路径射线追踪的快速算法[J]. 地球物理学报, 2006, 49 (5): 1467- 1474
ZHANG Mei-gen, CHENG Bing-jie, LI Xiao-fan, et al A fast algorithm of shortest path ray tracing[J]. Chinese Journal of Geophysics, 2006, 49 (5): 1467- 1474
doi: 10.3321/j.issn:0001-5733.2006.05.026
[17]   王东鹤, 陈祖斌, 刘昕, 等 地震波射线追踪方法研究综述[J]. 地球物理学进展, 2016, 31 (1): 344- 353
WANG Dong-he, CHEN Zu-bin, LIU Xin, et al Review of the seismic ray tracing method[J]. Progress in Geophysics, 2016, 31 (1): 344- 353
doi: 10.6038/pg20160140
[18]   杨杰, 王浩多, 程琳 混凝土结构内部缺陷超声波CT检测图像特征[J]. 水电能源科学, 2019, 37 (11): 127- 130
YANG Jie, WANG Hao-duo, CHENG Lin Experimental study on image characteristics of ultrasonic CT detection of internal defects in concrete structures[J]. Water Resources and Power, 2019, 37 (11): 127- 130
[19]   SU B, ZHANG Y, PENG L, et al The use of simultaneous iterative reconstruction technique for electrical capacitance tomography[J]. Chemical Engineering Journal, 2000, 77 (1/2): 37- 41
[20]   WOLF D, LUBK A, LICHTE H Weighted simultaneous iterative reconstruction technique for single-axis tomography[J]. Ultramicroscopy, 2014, 136 (1): 15- 25
[21]   李莉, 胡建平 克里金插值算法在等高线绘制中的应用[J]. 天津城市建设学院学报, 2008, 14 (1): 68- 71
LI Li, HU Jian-ping Application of Kriging interpolation in contour creation[J]. Journal of Tianjin Institute of Urban Construction, 2008, 14 (1): 68- 71
[22]   金元, 靳海水 小波分析方法在混凝土检测中的应用[J]. 无损检测, 2003, 25 (12): 4
JIN Yuan, JIN Hai-shui Wavelet analysis and its application to the testing of concrete[J]. Nondestructive Testing, 2003, 25 (12): 4
doi: 10.3969/j.issn.1000-6656.2003.12.005
[1] Jin-zhen LIU,Fei CHEN,Hui XIONG. Open electrical impedance imaging algorithm based on multi-scale residual network model[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(9): 1789-1795.
[2] Ying LI,Guan-xiong WANG,Wei YAN,Ying-ge ZHAO,Chong-lei MA. Improved sparse grid collocation method for uncertainty quantification of EIT conductivity distribution[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 613-621.
[3] Zhao-wen WANG,Hao ZHOU,Jia-wei LUO,Qi-wei WU,Ke-fa CEN. Research on thermal conductivity of storage tank foundation materials after molten salt leakage[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 137-143.
[4] LIU Da-long, FENG Dong-qin. Deceptive attack detection of control system using multi-scale principal component analysis[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1738-1746.
[5] SHI Chun-fei, SUN Yi, WANG Xiao-ping. Data processing methods of SPRi sensor[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 657-662.
[6] WANG Hong-kai, CHEN Zhong-hua, ZHOU Zong-wei, LI Ying-ci, LU Pei-ou, WANG Wen-zhi, LIU Wan-yu, YU Li-juan. Evaluation of machine learning classifiers for diagnosing mediastinal lymph node metastasis of lung cancer from PET/CT images[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 788-797.
[7] YE Ju-dong, YANG Zhen-jun, LIU Guo-hua, YAO Yong. Analytical solution and experimental verification of pullout force of twisted steel fibers in ultra-high performance concrete[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1911-1918.
[8] GUO Lai-gong, DAI Guang-long, YANG Ben-cai, XUE Jun-hua, CHEN Ben-liang. Stress anomaly monitoring of coal face based on microseismic tomography[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 2014-2022.
[9] NI Hong-bo, DENG Jun-quan, SHI Xiang-nan, ZHOU Xing-she,ZHAO Wei-chao, SONG Ya-long, JIA Jiang-bo. Sleep staging methods using pulse frequency variability[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(3): 572-576.
[10] HE Jun yu, XIAO Xi, HUANG Hao min, SHI Ji yan, XU Xin hua. Multiple time scales analysis of blue green algal cell density in Siling Reservoir[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 491-498.
[11] XIE Yu-jiang, LIU Gao. Algorithmic modification of acoustic impedance inversion
based on wavelet edge analysis and modelling: a case of
reservoir distribution prediction in h8 segment of MOU gas field,China
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1680-1684.
[12] WANG-Song, UEDA Yukio, YAMASHITA Yutaka, LIU Hua-feng. Selfadoptive dual node-set DOT image reconstruction[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 102-108.
[13] ZHANG Jun-chao, YUE Mao-xiong, LIU Hua-feng. Dynamic PET image reconstruction with Geometrical structure
prior constraints
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 961-966.
[14] LIU Yang, DAI Song-shi. Comparison between injected current and induced current magnetic
resonance electrical impedance tomography
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(10): 1848-1854.
[15] LIU Yang, WU Zhan-xiong, ZHU Shan-an, HE Bin. Induced current magnetic resonance electrical impedance tomography
for anisotropic brain tissues
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(1): 168-172.